When replacing any part on this appliance, use only spare parts that you can be assured conform to the safety and performance specification that we require. Do not use reconditioned or copy parts that have not been clearly authorised by Ideal.

For the very latest copy of literature for specification and maintenance practices visit our website www.idealcommercialboilers.com where you can download the relevant information in PDF format.
Table 1 Performance Data

<table>
<thead>
<tr>
<th>Boiler</th>
<th>715</th>
<th>790</th>
<th>940</th>
<th>1090</th>
<th>1240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler output (non-condensing) Mean 70°C</td>
<td>Max kW</td>
<td>666.7</td>
<td>736.6</td>
<td>877.2</td>
<td>1017.2</td>
</tr>
<tr>
<td></td>
<td>Min kW</td>
<td>131.5</td>
<td>145.2</td>
<td>170.4</td>
<td>201.4</td>
</tr>
<tr>
<td>Boiler output (condensing) Mean 40°C</td>
<td>Max kW</td>
<td>722.6</td>
<td>799</td>
<td>951.6</td>
<td>1105.4</td>
</tr>
<tr>
<td></td>
<td>Min kW</td>
<td>147.2</td>
<td>161</td>
<td>191.2</td>
<td>226</td>
</tr>
<tr>
<td>Boiler Input Net kW</td>
<td>681</td>
<td>752.4</td>
<td>895.2</td>
<td>1038</td>
<td>1180</td>
</tr>
<tr>
<td>Max Rate Gross kW</td>
<td>755.8</td>
<td>835</td>
<td>993.6</td>
<td>1152</td>
<td>1309.6</td>
</tr>
<tr>
<td>Boiler Input Net kW</td>
<td>136.2</td>
<td>150.4</td>
<td>179</td>
<td>207.6</td>
<td>236</td>
</tr>
<tr>
<td>Max Rate Gross kW</td>
<td>151.2</td>
<td>167</td>
<td>198.6</td>
<td>230.4</td>
<td>262</td>
</tr>
<tr>
<td>Maximum Gas Rate m³/h</td>
<td>@ Max. Rate</td>
<td>72</td>
<td>79.6</td>
<td>94.8</td>
<td>109.8</td>
</tr>
<tr>
<td></td>
<td>@ Min. Rate</td>
<td>1055.9</td>
<td>1166.6</td>
<td>1388</td>
<td>1609.4</td>
</tr>
<tr>
<td>Approx. flue gas volume 80/60°C i.e. non-condensing m³/h</td>
<td>@ Max. Rate</td>
<td>212.6</td>
<td>234.8</td>
<td>279.2</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>@ Min. Rate</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Approx. flue gas temp 50/30°C</td>
<td>@ Max. Rate °C</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>@ Min. Rate °C</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Approx. flue gas temp 80/60°C</td>
<td>@ Max. Rate °C</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Max. Flue Resistance Pa</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Flue Gas CO₂</td>
<td>@ Max Rate %</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>O₂/LNG</td>
<td>@ Min. Rate %</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Maximum Flue Temperature °C</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>NOx with O₂ = 0% mg/kWh</td>
<td><40</td>
<td><40</td>
<td><40</td>
<td><40</td>
<td><40</td>
</tr>
<tr>
<td>Class</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Boiler Efficiency Full Load 80/60°C %</td>
<td>97.9</td>
<td>97.9</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Boiler Efficiency Part Load %</td>
<td>109.7</td>
<td>109.7</td>
<td>109.8</td>
<td>109.8</td>
<td>109.8</td>
</tr>
<tr>
<td>Boiler Efficiency Full Load 50/30°C %</td>
<td>106.1</td>
<td>106.2</td>
<td>106.3</td>
<td>106.5</td>
<td>106.6</td>
</tr>
<tr>
<td>Seasonal Boiler Efficiency (Building Regs L2) Gross %</td>
<td>96.8</td>
<td>96.8</td>
<td>96.9</td>
<td>96.9</td>
<td>97</td>
</tr>
</tbody>
</table>

Table 2 General Data

<table>
<thead>
<tr>
<th>Boiler</th>
<th>715</th>
<th>790</th>
<th>940</th>
<th>1090</th>
<th>1240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Supply Pressure mbar</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Supply Connection R (in BSP)</td>
<td>2" (x2) **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Connection 3" - DN80 - PN6 **</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Flow Temperature °C</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Connection 3" - DN80 - PN6 **</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Resistance @ ΔT 20°C mbar</td>
<td>102.9</td>
<td>100.8</td>
<td>98.7</td>
<td>97.65</td>
<td>96.6</td>
</tr>
<tr>
<td>Max System Pressure bar (psi)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Electrical Supply 230v - 50Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Fuse Rating A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Consumption (Boiler Only) W</td>
<td>1202</td>
<td>1184</td>
<td>1340</td>
<td>1250</td>
<td>1540</td>
</tr>
<tr>
<td>Power Consumption - Standby (Boiler Only) W</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Inlet Ø mm</td>
<td>200 (x2) **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flue Size Ø mm</td>
<td>303 ±1</td>
<td>303 ±1</td>
<td>303 ±1</td>
<td>353 ±1</td>
<td>353 ±1</td>
</tr>
<tr>
<td>Condensate Drain Ø mm</td>
<td>21.5 (x2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Power Levels <60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Weight (Packaged) kg (lb)</td>
<td>925 (2039)</td>
<td>959 (2114)</td>
<td>1015 (2238)</td>
<td>1073 (2366)</td>
<td>1113 (2454)</td>
</tr>
<tr>
<td>Boiler Weight (Unpackaged Dry) kg (lb)</td>
<td>918 (2024)</td>
<td>952 (2099)</td>
<td>1008 (2222)</td>
<td>1066 (2350)</td>
<td>1106 (2438)</td>
</tr>
<tr>
<td>Water content litres (gal)</td>
<td>94.6 (20.8)</td>
<td>106.6 (23.4)</td>
<td>118.6 (26)</td>
<td>130.6 (28.8)</td>
<td>150.6 (33.2)</td>
</tr>
</tbody>
</table>

Note. Electricity supply and Fuse rating for pumps etc. refer to manufacturer's instructions. **Optional Headers not fitted

Important. These appliances are CE certified for safety and performance. It is, therefore, important that no external control devices, e.g. flue dampers, economisers etc., are directly connected to these appliances unless covered by these Installation and Servicing Instructions or as otherwise recommended by Ideal Boilers in writing. If in doubt please enquire.

Any direct connection of a control device not approved by Ideal Boilers could invalidate the certification and the normal appliance warranty. It could also infringe the Gas Safety Regulations and the above regulations.

Natural gas consumption is calculated using a calorific value of 37.8MJ/m³ (1038Btu/ft³) gross or 34 MJ/m³ (910 Btu/ft³) nett at 15°C and 1013.25 mbar.

a. For l/s, divide the gross heat input (kW) by the gross C.V. of the gas (MJ/m³).
b. For ft³/h, divide the gross heat input (Btu/h) by the gross C.V. of the gas (Btu/ft³).
c. For Btu's, multiply gross heat input (kW) by 3412 (Btu).

Health & Safety Document No. 635

The electricity at work regulations, 1989. The manufacturer’s notes must NOT be taken, in any way, as overriding statutory obligations.

Caution. To avoid the possibility of injury during the installation, servicing or cleaning of this appliance, care should be taken when handling edges of sheet steel components.
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Assembly - Exploded View</td>
<td>15</td>
</tr>
<tr>
<td>Boiler Clearances</td>
<td>12</td>
</tr>
<tr>
<td>Boiler Dimensions</td>
<td>8-11</td>
</tr>
<tr>
<td>Commissioning and Testing</td>
<td>37</td>
</tr>
<tr>
<td>Electrical Connections</td>
<td>23</td>
</tr>
<tr>
<td>Electrical Supply</td>
<td>6</td>
</tr>
<tr>
<td>Fault Finding</td>
<td>52-61</td>
</tr>
<tr>
<td>Flue / Air Duct Installation</td>
<td>19-21</td>
</tr>
<tr>
<td>Gas Safety Regulations</td>
<td>4</td>
</tr>
<tr>
<td>Gas Supply</td>
<td>4</td>
</tr>
<tr>
<td>Hydraulic Resistance</td>
<td>7</td>
</tr>
<tr>
<td>Initial Lighting</td>
<td>37</td>
</tr>
<tr>
<td>Installation</td>
<td>15-39</td>
</tr>
<tr>
<td>Option Kits</td>
<td>4</td>
</tr>
<tr>
<td>Performance Data</td>
<td>2</td>
</tr>
<tr>
<td>Replacement of Parts</td>
<td>46-51</td>
</tr>
<tr>
<td>Servicing</td>
<td>40-51</td>
</tr>
<tr>
<td>Short List of Parts</td>
<td>62</td>
</tr>
<tr>
<td>Transporting & Positioning the Boiler</td>
<td>16-17</td>
</tr>
<tr>
<td>Ventilation</td>
<td>13</td>
</tr>
<tr>
<td>Water Circulation</td>
<td>5</td>
</tr>
<tr>
<td>Water Treatment</td>
<td>6</td>
</tr>
<tr>
<td>Wiring Diagrams</td>
<td>28-29</td>
</tr>
</tbody>
</table>

Key to symbols

- **GB** = United Kingdom (Countries of destination)
- **IE** = Ireland (Countries of destination)
- **PMS** = Maximum operating pressure of water
- **B23** = An appliance intended to be connected to a flue which evacuates the products of combustion to the outside of the room containing the boiler. The combustion air is drawn directly from the room. The fan is up stream of the combustion chamber.
- **C63** = A room sealed appliance intended to be connected to a separately approved and marketed system for the supply of combustion air and discharge of combustion products.
 - The fan is up stream of the combustion chamber.
 - Condensate flow from the flue is not permitted back into the appliance.
 - The maximum allowable temperature of incoming combustion air for C63 type flue is 40°C.
 - Terminals for the supply of combustion air and for evacuation of combustion products shall not be installed on opposite walls of the building.
 - The maximum allowable re-circulation rate is 10%.
- **C53** = A room sealed appliance which is connected via its separate ducts to two terminals that may terminate in zones of different pressure.

IMAX XTRA EL

715, 790, 940, 1090, 1240

Natural Gas only

Destination Countries: GB, IE

NOTE TO THE INSTALLER: COMPLETE THE COMMISSIONING REPORT AND LEAVE THESE INSTRUCTIONS WITH APPLIANCE
INTRODUCTION
The IMAX XTRA EL boilers are fully automatically controlled, floor standing, fanned, high efficiency condensing appliances. The appliance comprises of two boiler modules. The comprehensive boiler controls built into the appliance include:
- Volt free ‘alarm’ contacts (lockout)
- Volt free ‘boiler run’ contacts
- Burner hours run meters
- System temperatures
The boilers can draw their combustion air from the room or via ducting from outside.

Through a sophisticated control system combined with premix burner technology and an aluminium heat exchanger, the boilers are capable of high operating efficiencies and low emissions. These boilers are certified to meet the requirements of the EC Gas Appliance Directive, Boiler Efficiency Directive, EMC, Low Voltage Directive and Energy Related Products Directive.

OPTIONAL EXTRA KITS
- Modulating Sequencer Kit
 - DHW Tank Kit (used with modulating Sequencer)
 - Plant Room Sensor Kit (used with modulating Sequencer)
- 6 Zone Expansion Kit (used with modulating Sequencer)
- Programmable Room Thermostat Kit (for use with boiler & modulating Sequencer)
- Programmable Room Thermostat Kit (for use with boiler only)
- Outside Sensor Kit
- DHW Tank Sensor Kit
- Safety Interlock Kit (x 2 req’d)
- BACNet Gateway Kit
- LONWorks Gateway Kit
- MODBus Gateway Kit
- Remote Access Kit
- Sealed System Services Flow Manifold Kit (x 2 req’d)
- Inlet Air Filter Kit (x 2 req’d)
- Condensate Pump Kit (x 2 req’d)
- Room Sealed Air Duct Kit (x 2 req’d)
- Header Kit (flow/return)
- Header Kit (Gas)
- Header Kit (air)
- 300-350mm Flue Increaser (715kW, 790kW & 940kW only)

SAFETY
Current Gas Safety (Installation and Use) Regulations or rules in force
The appliance is suitable only for installation in GB and IE and should be installed in accordance with the rules in force. In GB, the installation must be carried out by a GAS SAFE Registered Installer or in IE by a competent person. It must be carried out in accordance with the relevant requirements of the:
- Gas Safety (Installation and Use) Regulations
- The appropriate Building Regulations either The Building Regulations, The Building Regulations (Scotland), Building Regulations (Northern Ireland).
- The Water Fittings Regulations or Water byelaws in Scotland.
- The Current I.E.E. Wiring Regulations.
Where no specific instructions are given, reference should be made to the relevant British Standard Code of Practice.
In IE, the installation must be carried out by a Competent Person and installed in accordance with the current Building Regulations and reference should be made to the current ETCI rules for electrical installation.

The boilers have been tested and certified by BSI to EN 15502 for use with Natural Gas.

Detailed recommendations are contained in the following Standards and Codes of Practice:
- BS. 5854 Flue and flue Structures in Buildings.
- BS. 6644 Installation of gas fired hot water boilers of rated inputs between 70kW and 1.8MW (net) (2nd and 3rd family gases).
- BS. 6880 Low temperature hot water heating systems of output greater than 45kW.
- IGE/UP/1 Soundness testing and purging of industrial and commercial gas installations.
- IGE/UP/2 Gas installation pipework, boosters and compressors on industrial and commercial premises.
- IGE/UP/10 Installation of gas appliances in industrial and commercial premises.

SAFE HANDLING OF SUBSTANCES
No asbestos, mercury or CFCs are included in any part of the boiler or its manufacture.

FOUNDATION / LOCATION OF BOILER
The boiler must stand on a floor which must be flat, level and of a suitable load bearing capacity to support the weight of the boiler (when filled with water) and any ancillary equipment. Ideally the boiler should be placed on a plinth exceeding the plan area of the boiler by 75mm on each side and at least 100mm high.
The boiler must not be fitted outside.

GAS SUPPLY
The local gas supplier should be consulted, at the installation planning stage, in order to establish the availability of an adequate supply of gas. An existing service pipe must NOT be used without prior consultation with the local gas supplier.

A gas meter can only be connected by the local gas supplier or by a registered GAS SAFE engineer or in IE by a competent person.

An existing meter should be checked, preferably by the gas supplier, to ensure that the meter is adequate to deal with the rate of gas supply required. A minimum working gas pressure of 15mbar MUST be available at the boiler inlet for Natural gas.

Do not use pipes of smaller size than the boiler inlet gas connection. The complete installation MUST be tested for gas soundness and purged in accordance with the appropriate standards.

Gas Boosters
A gas booster is required if the gas pressure available at the boiler is lower than that required by the boiler manufacturer to attain the flow rate for maximum burner input rating.

Location of the booster requires careful consideration but should preferably be closer to the burner rather than the gas meter. Ventilation should also be considered to ensure that ambient temperatures do not exceed designed recommendations. Further guidance is provided in IGE/UP/2.
FLUE INSTALLATION

The appropriate Ideal Flue Header Kit must be fitted to these boilers.

IMPORTANT. It is the responsibility of the installer to ensure, in practice, that products of combustion discharging from the terminal cannot re-enter the building or any other adjacent building through ventilators, windows, doors, other sources of natural air infiltration, or forced ventilation / air conditioning. If this should occur the appliance MUST be isolated from the gas supply and labelled as 'unsafe' until corrective action can be taken.

Terminal Position
Due to the high efficiency of the boilers plumbing will occur. Vertical termination is recommended and terminal positions which could cause problems should be avoided. Particular care should be taken in the case of large output boiler installations, and complying with the requirements of the Clean Air Act.

The flue must be installed in accordance with the appropriate Building Regulations and standards listed on page 4 and in compliance with BS6644. In IE refer to I.S.820:2000.

FLUE SYSTEM DESIGN

Due to the high efficiency of these boilers, the flue gas temperatures are low and the buoyancy in the stack will be relatively small. The boiler is supplied with an integral fan which is fully matched to the boiler in each case to provide correct combustion air flow and overcome the flue resistance.

The power of this fan is such that there is a large reserve of pressure available to overcome a significant length of flue without affecting the combustion performance of the boiler. The maximum & minimum pressure available measured at the base of the flue to overcome combined flue and air resistance is 100Pa (max) and -10Pa (min) for all model sizes. The pressure should be checked at maximum heat input to ensure this maximum pressure is not exceeded. Care should be taken with tall flue systems to ensure excess buoyancy is not created. A negative pressure must not be created at the boiler flue outlet.

<table>
<thead>
<tr>
<th>Boiler Size</th>
<th>715</th>
<th>790</th>
<th>940</th>
<th>1090</th>
<th>1240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue Pressure (max) Pa</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flue Pressure (min) Pa</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The addition of elbows and their positions in the flue and the terminal will have a significant effect on the maximum flue length. Consult with your flue supplier for detailed design work.

IMPORTANT NOTE.

If combustion air is drawn from within the boiler room, ensure no dust or airborne debris can be ingested into the appliance. Dusty concrete flooring should be sealed to reduce the presence of dust. Ideally where possible duct the air supply into the boiler room from a clean source outside the boiler room/buidling.

If the air filter accessories are fitted the 100Pa / - 10Pa pressure requirement must be checked at maximum heat input with the filter fitted.

Material
With no requirement for buoyancy to discharge flue products and with low flue gas temperatures, single wall flues are suitable for most installations. Care should still be taken to maintain compliance with building regulations and relevant standards. Care should also be taken in the selection of flue terminals as these tend to accentuate the formation of a plume and could freeze in cold weather conditions and can cause added flue resistance. Care should be taken to ensure the specification of the chimney is suitable for the application by reference to the manufacturer’s literature.

WATER CIRCULATION SYSTEM

The boiler is suitable for connection to a sealed heating system or an open vented system.

Ideal Boilers recommend that the boiler be installed on a reverse return system.

A circulation pump MUST be connected to the boiler, see below.

The boiler must NOT be used for direct hot water supply. The hot water storage cylinder MUST be of the indirect type.

Single feed, indirect cylinders are not recommended and MUST NOT be used on sealed systems.

The appliances are NOT suitable for gravity central heating nor are they suitable for the provision of gravity domestic hot water.

The hot water cylinder and ancillary pipework, not forming part of the useful heating surface, should be lagged to prevent heat loss and any possible freezing - particularly where pipes run through roof spaces and ventilated under floor spaces.

The boiler must be vented. There must be no low points between the boiler flow connection and a system vent point, which should be positioned as close as practically possible to the boiler flow connection.

Draining taps MUST be located in accessible positions, which permit the draining of the whole system - including the boiler and hot water storage vessel. They should be at least 1/2” BSP nominal size and be in accordance with BS: 2879. Do not use the boiler drain tap to drain the system as this can induce sludge into the heat exchanger.

The central heating system should be in accordance with the relevant standards listed on page 4.

Once the burner has extinguished the boiler requires a 2 minute pump overrun to dissipate the residual heat. In order to allow this a 2 minute pump overrun is incorporated into the boiler control.

An external pump must be connected or controlled by the boiler, however if it is directly connected it must not exceed 1.3A inductive load, if it does then a relay or contactor must be used.
When sizing pumps, reference should be made to the Hydraulic Resistance Table on page 7 which show the boiler resistance against flow rates, to achieve the required temperature differential. Flow rates for common systems using either 11°C or 20°C temperature differentials are given in the table below.

<table>
<thead>
<tr>
<th>Boiler Output</th>
<th>Water flow rate temp. difference 11°C (20°F)</th>
<th>Water flow rate temp. difference 20°C (36°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kW)</td>
<td>l/s m³/h</td>
<td>l/s m³/h</td>
</tr>
<tr>
<td>715</td>
<td>15.5 55.9</td>
<td>8.5 30.7</td>
</tr>
<tr>
<td>790</td>
<td>17.2 61.8</td>
<td>9.4 34.0</td>
</tr>
<tr>
<td>940</td>
<td>20.4 73.5</td>
<td>11.2 40.4</td>
</tr>
<tr>
<td>1090</td>
<td>23.7 85.2</td>
<td>13.0 46.9</td>
</tr>
<tr>
<td>1240</td>
<td>26.9 96.9</td>
<td>14.8 53.3</td>
</tr>
</tbody>
</table>

Note.
- With the boiler firing at maximum rate, the temperature differential should not be less than 10°C. High flow rates required for lower temperature differentials could lead to erosion of the heat exchanger water ways.
- With the boiler firing at minimum rate, the temperature differential should not be greater than 35°C. Lower flow rates generating higher temperature differentials will lead to lock out of the boiler.
- The lower the return temperature to the boiler, the higher the efficiency. At return temperatures of 55°C and below, the difference becomes marked because the water in the flue gases starts to condense, releasing its latent heat.

In installations where all radiators have been provided with thermostatic radiator valves, it is essential that water circulation through the boiler is guaranteed. A mixing header will perform this task. Alternatively this can be best achieved by means of a differential pressure valve, which is installed in a bypass between the flow and return pipes. The bypass should be fitted at least 6m from the boiler, and should be capable of allowing a minimum flow rate to achieve a temperature differential of no greater than 35°C at minimum rate.

WATER TREATMENT
These boilers incorporate an ALUMINIUM heat exchanger. IMPORTANT. The application of any other treatment to this product may render the guarantee of Ideal Boilers INVALID.

Ideal Boilers recommend Water Treatment in accordance with Guidance Notes on Water Treatment in Central Heating Systems. If water treatment is used Ideal Boilers recommend only the use of SCALEMASTER SM-1 PRO, FERNOX, MBI, ADEY MC1, SENTINEL X100 or CALMAG CM100 inhibitors and associated water treatment products, which must be used in accordance with the manufacturers’ instructions.

In hard water areas where mains water can exceed 200ppm Total Hardness (as defined by BS 7593:2006 Table 2) a scale reducing device should be fitted into the boiler cold supply within the requirements of the local water company. The use of artificially softened water, however, is not permitted.

Ideal Boilers recommend the use of Fernox Quantomat, Sentinel Combiguard, Calmag CalPhos I scale reducing devices or Scalemaster In-line Scale Inhibitor branded Ideal, which must be used in accordance with the manufacturers’ instructions.

Notes.
1. It is most important that the correct concentration of the water treatment products is maintained in accordance with the manufacturers’ instructions.

2. If the boiler is installed in an existing system any unsuitable additives MUST be removed by thorough cleansing.
3. In hard water areas, treatment to prevent lime scale may be necessary - however the use of artificially softened water is NOT permitted.
4. Under no circumstances should the boiler be fired before the system has been thoroughly flushed.

For further information contact:

Fernox Alent Plc
Forsyth Road, Sheerwater, Woking, Surrey GU21 5RZ
Tel: +44 (0) 1785 811636

Calmag Ltd.
Riverview Buildings, Bradford Road, Riddlesden, Keighley, West Yorkshire BD20 5JH
Tel: +44 (0) 1535 210320

Adey Professional Heating Solutions
Gloucester Road, Cheltenham GL51 8NR
Tel: +44 (0) 1242 546700

Scalemaster Water Treatment Products
Emerald Way, Stone, Staffordshire ST15 0SR
Tel: +44 (0) 1785 811636

Fernox Alent Plc
Forsyth Road, Sheerwater, Woking, Surrey GU21 5RZ
Tel: +44 (0) 8706 015000

Sentinel Performance Solutions
7560 Daresbury Park, Daresbury, Warrington, Cheshire WA4 4BS
Tel: 0800 389 4670

Scalemaster Water Treatment Products
Emerald Way, Stone, Staffordshire ST15 0SR
Tel: +44 (0) 1785 811636

Calmag Ltd.
Riverview Buildings, Bradford Road, Riddlesden, Keighley, West Yorkshire BD20 5JH
Tel: +44 (0) 1535 210320

Adey Professional Heating Solutions
Gloucester Road, Cheltenham GL51 8NR
Tel: +44 (0) 1242 546700

ELECTRICAL SUPPLY

WARNING. This appliance must be earthed.

Wiring external to the appliance MUST be in accordance with the current I.E.E. (BS7671) Wiring Regulations and any local regulations which apply. For Ireland reference should be made to the current ETCI rules for electrical installations.

The point of connection to the mains should be readily accessible and adjacent to the boiler.

CONDENSATE DRAIN

Three condensate traps are provided with each appliance. Two are fitted to the boiler and one is fitted to the flue manifold, refer to Frame 12. These drains must be connected to a drainage point on site. All pipework and fittings in the condensate drainage system MUST be made of plastic - no other materials may be used.

IMPORTANT. Any external runs must be insulated to avoid freezing in cold weather causing blocking.
Hydraulic Resistance

<table>
<thead>
<tr>
<th></th>
<th>715kW</th>
<th>790kW</th>
<th>940kW</th>
<th>1090kW</th>
<th>1240kW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flow (m³/h)</td>
<td>Flow (L/min)</td>
<td>Pressure drop (mbar)</td>
<td>Flow (m³/h)</td>
<td>Flow (L/min)</td>
</tr>
<tr>
<td>Minimal flow</td>
<td>3.85</td>
<td>64.2</td>
<td>2</td>
<td>4.18</td>
<td>69.7</td>
</tr>
<tr>
<td>Nominal flow x 0.5</td>
<td>16.94</td>
<td>282.3</td>
<td>25</td>
<td>18.7</td>
<td>311.7</td>
</tr>
<tr>
<td>Nominal flow</td>
<td>33.88</td>
<td>564.7</td>
<td>99</td>
<td>37.4</td>
<td>623.3</td>
</tr>
<tr>
<td>Nominal flow x 1.5</td>
<td>50.82</td>
<td>847.0</td>
<td>223</td>
<td>56.1</td>
<td>935.0</td>
</tr>
<tr>
<td>Maximum flow</td>
<td>67.65</td>
<td>1127.5</td>
<td>396</td>
<td>74.8</td>
<td>1246.7</td>
</tr>
</tbody>
</table>
1. BOILER DIMENSIONS - FRONT VIEW
3 BOILER DIMENSIONS - REAR VIEW
4 BOILER DIMENSIONS - TOP VIEW

IMAX XTRA EL - Installation & Servicing
5 BOILER CLEARANCES

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>B</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>C</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>D</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>TOP</td>
<td>700</td>
<td>1000</td>
</tr>
</tbody>
</table>
6 VENTILATION

The ventilation requirements of these boilers are dependant on the type of flue system used, and their heat input. All vents must be permanent with no means of closing, and positioned to avoid accidental obstructions by blocking or flooding.

Detailed reference should be made to BS. 6644 for inputs between 70kW and 1.8MW (net). In IE refer to the current edition of I.S.820. The following notes are for general guidance only:

Dust contamination in the combustion air may cause blockage of the burner slots. Unless the boiler room provides a dust free environment then direct connection of the air intake via ducting to clean outside air should be used.

The temperature within a boiler room shall not exceed 25°C within 100 mm of the floor, 32°C at mid height and 40°C within 100 mm of the ceiling.

IMPORTANT NOTE.

If combustion air is drawn from within the boiler room, ensure no dust or airborne debris can be ingested into the appliance. Dusty concrete flooring should be sealed to reduce the presence of dust. Ideally where possible duct the air supply into the boiler room from a clean source outside the boiler room/building.

Open Flued Installations

If ventilation is to be provided by means of permanent high and low vents communicating direct with outside air, then reference can be made to the sizes below. For other ventilation options refer to BS. 6644. In IE refer to the current edition of I.S.820.

Required area (cm²) per kW of total rated input (net)

<table>
<thead>
<tr>
<th></th>
<th>Boiler Room</th>
<th>Enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low level (inlet)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>High level (outlet)</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: Where a boiler installation is to operate in summer months (e.g. DHW) additional ventilation requirements are stated, if operating for more than 50% of time (refer to BS6644).

7 SEALED SYSTEM REQUIREMENTS

Working pressure 6 bar maximum.

Particular reference should be made to BS. 6644 and Guidance note PM5 "Automatically controlled steam and hot water boilers" published by the Health and Safety Executive.

The information and guidance given below is not intended to override any requirements of either of the above publications or the requirements of the local authority, gas or water undertakings.

In general commercial closed pressurised systems are provided with either manual or automatic water make up.

In both instances it will be necessary to fit automatic controls intended to protect the boiler, circulating system and ancillary equipment by shutting down the boiler plant if a potentially hazardous situation should arise.

Examples of such situations are low water level and operating pressure or excessive pressure within the system. Depending on circumstances, controls will need to be either manual or automatic reset. In the event of a shutdown both visual and audible alarms may be necessary.

Expansion vessels used must comply with BS. 4814 and must be sized on the basis of the total system volume and initial charge pressure.

Initial minimum charge pressure should not be less than 1.0 bar (15psi) and must take account of the static head and specification of the pressurising equipment. The maximum water temperatures permissible at the point of minimum pressure in the system are specified in BSEN 61508.

When make up water is not provided automatically it will be necessary to fit controls which shut down the plant in the event of the maximum system pressure approaching to within 0.35bar (5psi) of the safety valve setting.

Other British Standards applicable to commercial sealed systems are:

BS. 6680: Part 2
BS. 1212
BS. 6281: Part 1
BS. 6282: Part 1
BS. 6283: Part 4

IMPORTANT: If a sealed system is required please ensure a maximum flow temperature of 90°C is not exceeded.
8 OPEN VENTED SYSTEM REQUIREMENTS

Detail reference should be made to the appropriate standards listed on page 4.

The information and guidance given below is not intended to override any requirements of the above publications or the requirements of the local authority, gas or water undertakings.

The vertical distance between the pump and feed/expansion cistern MUST comply with the pump manufacturer’s minimum requirements, to avoid cavitation. Should these conditions not apply either lower the pump position or raise the cistern above the minimum requirement specified by Ideal Boilers. The isolation valves should be fitted as close to the pump as possible.

The information provided is based on the following assumptions:

1. An independent open vent/safety pipe connection is made immediately after the system flow pipe connection.
2. An independent cold feed/expansion pipe connection is made immediately after the open vent/safety pipe connection.
3. The maximum flow rate through the boiler is based on a temperature difference of 20°C at full boiler output.
4. The boiler is at the highest point of circulation in the system. Systems designed to rise above the boiler flow tappings will automatically require a minimum static head higher than that shown.
5. The position of the open vent/safety pipe above the expansion cistern water level is given as a guide only. The final position will depend upon the particular characteristics of the system. Pumping over of water into the expansion cistern must be avoided.
6. Both open vent/safety pipe and cold feed/expansion pipes must be of adequate diameter to suit the output of the boiler. Refer to Tables below and BS 6644:2005.

Open Vent Pipe Sizes

Open vent pipe size is determined using:

\[A = 3.5 \times Q_R \]

When:
- \(Q_R \) is heat input in kW
- \(A \) is area in mm²

Cold Feed Pipe Sizes

A minimum pipe size for the cold feed should be 50mm (bore) or 2” (DN).

Note; Steel pipe sizes complying with medium or heavy quilting or BS 1387.

IMPORTANT: If an open vented system is required please ensure a maximum flow temperature of 80°C is not exceeded.
9 BOILER ASSEMBLY - Exploded View

Note that item numbers are linked to the spares list.
10 TRANSPORTING & POSITIONING THE BOILERS

NOTE. Transporting via pallet truck (side loading)
If the appliance is required to be transported by a pallet truck from the side, it may be necessary (depending on the type of truck) to remove the two wooden lats in the middle of the pallet to aid access.

1. Remove the 4 wood screws at the side of the appliance.
2. Remove the 4 wood screws on the opposite side of the appliance.
3. Remove the 2 wooden lats.

This will now be suitable for side loading onto a pallet truck.

CAUTION: Risk of injury through carrying heavy loads.
- Only transport the boiler by means of a crane / hoist, forklift truck or transport rollers.
- Only trained authorised personnel may undertake the handling (e.g. by forklift truck) or lifting by means of a crane/hoist.
- Observe safety instructions relating to the lifting of heavy loads (e.g. by means of a crane/hoist)
- Wear personal safety equipment (e.g. safety boots and protective gloves).
- Protect the boiler against slippage by means of a transport strap.

NOTICE: Boiler damage through impact.
The standard delivery of the boiler includes components that are susceptible to impact damage.
- Protect all components against impact influences when transporting the boiler.
- Observe the transport instructions on the packaging.
The boiler may be transported to the place of installation by crane/hoist, forklift truck or pallet truck, ensuring safe practice at all times. Where possible, transport the boiler to the installation location in its shipping packaging to protect it from contamination and damage.

Note. Ensure the Slave Module is transported first and the Master Module transported afterwards.

1. Take the Slave Module to the plant room via crane/hoist, forklift truck or pallet truck*.
 (*If using pallet truck refer to diagram above.)
2. To remove the appliance from the pallet, packaging and panels MUST be removed and stored safely. (refer to frame 36 for panel removals)
3. Remove the two screws securing the Slave Module to the pallet (Centreline front and rear).
4. Slide the Slave Module off the pallet. At this point it can be put on transport rollers if necessary.
5. Position the Slave Module for installation and using a spirit level check the appliance is level to ensure no air pockets can collect in the boiler and the condensate can fully drain.
6. If the floor is not level, fit the adjustable feet provided in the hardware pack and adjust to level the Slave Module. To fit the feet raise one end of the unit and support the frame with suitable timber. Raise the other end in the same way. Fit the adjustable feet and secure.

Repeat steps 1-6 for the fitting the Master Module, ensuring the Master is placed to the RHS of the Slave Module.

continued
TRANSPORTING & POSITIONING THE BOILERS.... CONT’D

7. To fit the rear infill panel slide the Master Module across at the rear to allow the rear infill panel to be loosely fitted using the bolts provided in the Master Module hardware pack.

8. To fit the front infill panel slide the Master Module across at the front to allow the front infill panel to be loosely fitted using the bolts provided.

9. Position the Master Module against the Slave Module and tighten the securing bolts.

NOTE. The units MUST be correctly positioned before fully tightening the bolts to prevent distorting the frame.

10. Fit the top infill panel by engaging the cut outs with the location pins and slide forward ensuring a neat flush finish.

11. Screw locking bracket into the rear of the appliance utilising screws already in place for the back panel.
11 FITMENT OF FLOW AND RETURN MANIFOLDS

1. Remove front panel (refer to Frame 40) and remove hardware pack.
2. To allow fitting of the manifold extensions, remove the rear panels by removing all the retaining screws.
3. To fit the flow manifold extension fit the O ring seal into the recess in the rear of the flow manifold.
4. Align the flow manifold extension with the 2" BSP branch vertically upwards.
5. Insert the 6 bolts supplied in the hardware packs and fit the securing nuts. Tighten sequentially.

Note.
If fitting the sealed system optional kit, please refer to the instructions supplied with the kit. If the kit is not being fitted, the 2" BSP branch must be capped off.

6. The flange joint is DN80 PN6. A suitable mating flange with bolts and gaskets must be fitted to the system pipework for connection.
7. To fit the return manifold extension follow the instructions above with the exception of the ¾" BSP branch which must be aligned vertically downwards.

Note. The ¾" BSP branch may be used to fit a drain point. If this is not required the ¾" BSP branch must be capped off.
8. Once the extensions have been fitted the insulation supplied in the hardware pack must be fitted. The insulation must be secured using the wire clips supplied in the hardware pack picture.
9. If the flow & return header manifolds have been purchased, fit these ensuring a reverse return circuit is created. If not a reverse return circuit is still required.
12 FLUE / AIR DUCT INSTALLATION

1. FLUE
When fitting the flue to the flue socket take care not to disturb the lip seal which must be present.
The flue should be supported using the bracket provided in such a way as not to place a load on the flue socket.

2. FITMENT OF THE FLUE ADAPTOR
To fit the flue adaptor apply the lubricant provided with the flue adaptor in the hardware pack around the spigot or male end of the adaptor. Offer up the adaptor with the open drain point pointing vertically downwards and push the adaptor fully home into the socket.

3. FITMENT OF NON-RETURN VALVE
This stainless steel motorised damper must be fitted to the flue adaptor. The mains connector on the motorised damper must be routed via the mains conduit then into the controls housing and fitted to the female connector as shown. The motorised damper must be fitted with the motor housing to the outside of each of the modules.

4. FITMENT OF THE FLUE COMPONENTS
(i) Remove the flue manifold and the two elbows from the accessories pallet.
(ii) Locate two of the 250mm “V” flue clamps and the adhesive tube provided.
(iii) It is recommended to fit the elbows to the manifold before attempting to connect to the boiler non-return valves.
(iv) First ensure all components that require sealant are clean from any dirt, grease and other contaminants. This is extremely important to provide the correct surface conditions for the mastic sealant to adhere to. Failure to achieve this will result in an inadequate joint seal which will cause spillage.
(v) Once decontamination has been achieved apply an adequate amount of sealant (ACC AS5600 ONLY) around the male locating spigot (please see illustration provided). This sealant location shown will guarantee that the connecting joints will be flue gas and moisture tight.
(vi) Please note that removing the preformed seal and pumping mastic sealant into the groove formed within the female profile will not seal the connections correctly, the preformed seal should never be removed.
(vii) Using the locating spigot of the male as a guide, simply slot the two parts of CFS together.
(viii) Connection sockets shall be secured by bolting a profiled, externally mounted, jointing band over the two interconnecting joint profiles.
(ix) It is also extremely important that a bead of sealant is also applied to the inner centre of the jointing band prior to its installation.
(x) All sealant that is forced out from beneath the band must be removed before leaving site
(xi) Fit the V-bands supplied to both elbow/manifold connections, position both bands around the flanges located within the groove.
(xii) Tightly fasten both joints using the Stainless Steel nuts and bolts provided.
(xiii) Once assembled ensure the assembly is fitted to the non-return valves immediately as some adjustment of the elbows may be required.
(xiv) The weight of the flue manifold and elbows must be supported with the flue bracket supplied, it is recommended this be assembled prior to fitting the flue.
(xv) Once the flue manifold is in place fit the two clamps to the joints between the elbows and the non-return valves.
(xvi) Screw the flue condensate trap onto the flue manifold and terminate the outlet to an appropriate drain.
(xvii) The 1090 and 1240kW models require 350mm diameter flue, therefore fit the provided adapter into the flue manifold.

Note. The 300-350mm flue increaser is available for all other models as and optional extra kit.
(xviii) The flue bracket components provided in the flue kit MUST be fitted as shown to support the flue weight and ensure the flue cannot become detached from the boilers.
(xix) Any additional flue components that are fitted which are not provided by Ideal Boilers must be supported and made secure to ensure no movement.

continued
NOTE. Ensure flue elbows (E) are fitted into the motorised damper (D) without any incline or decline to prevent the paddle from sticking open or closed.
5. FITMENT OF FLUE BRACKET
Assemble flue brackets for each module as shown below, ensuring the flue is supported and retained. Once assembled fix the base of the bracket to the floor using appropriate screws. (not provided)

NOTE. Air Duct
If it is necessary to duct the air inlet from outside, the optional air duct kit must be purchased. Instructions for installation are provided with the kit.
13 CONDENSATE DRAIN
The condensate drains on the Master and Slave Modules must be connected to the condensate drain points at the sump outlets and the flue adaptors on both heat exchangers. The condensate drain outlets on each Module must be connected to a drainage point, preferably within the building.
1. Ensure the pipe is fully located into the condensate traps.
2. Ensure the pipe is located at least halfway onto the flue adaptor drain points.
3. Ensure the pipe is fully located onto the condensate traps and held in place with the clips provided.
4. The condensate traps must be secured with the bracket using the 2 screws onto both back panels.

14 FROST PROTECTION
The boiler has built into its control system the facility to protect the boiler only against freezing.
If the boiler flow temperature T_1 falls below 5°C the pump and burner run until the temperature exceeds 19°C.
Central heating systems fitted wholly inside the building do not normally require frost protections as the building acts as a ‘storage heater’ and can normally be left at least 24 hours without frost damage. However, if parts of the pipework run outside the building or if the boiler will be left off for more than a day or so, then a frost thermostat should be wired into the system.

15 GAS CONNECTIONS
With the optional gas header fitted, ensure the pressure drop from the gas meter to the test point on the gas manifold is <1 mbar. There will be a pressure drop from the manifold test point to the gas valve inlet, provided there is an adequate pressure at the manifold the boiler should operate normally.
A minimum working gas pressure of 15mbar (6” w.g.) must be available at the Master and Slave gas valve inlets.
Fit a gas supply pipe NOT LESS THAN 3” BSP to the Modules if the optional header is fitted. Refer to Frame 4.

<table>
<thead>
<tr>
<th>Max Rate (mbar)</th>
<th>715</th>
<th>790</th>
<th>940</th>
<th>1090</th>
<th>1240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Rate (mbar)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
16 ELECTRICAL CONNECTIONS

Warning. This appliance MUST be efficiently earthed.

A mains supply of 230V 50Hz @ 7A is required for each module. The supply wiring MUST be suitable for mains voltage.

Connection should be made in a way that allows complete isolation of the electrical supply - such as a double pole switch, having a 3mm (1/8") contact separation in both poles serving only the boiler and system controls. The means of isolation must be accessible to the user after installation.

When making mains electrical connections to the boiler it is important that the wires are prepared in such a way that the earth conductor is longer than the current carrying conductors, such that if the cord anchorage should slip the current carrying conductors become taut before the earthing conductor.

Two plastic conduit tubes are provided in each module, to allow routing from the installation connections on the front of the boiler to the rear egress point.

One conduit should be used for 230V mains wires, including the Flue Damper lead, and one for SELV wiring.

17 EXTERNAL WIRING

External wiring MUST be in accordance with the current I.E.E. (BS7671) Wiring Regulations. For Ireland reference should be made to the current ETCI rules for electrical installations.

For wiring external controls to the boiler, reference should be made to the systems wiring diagram supplied by the relevant manufacturer in conjunction with the connection diagram shown in Frames 20 & 21.

Difficulty in wiring should not arise, providing the following directions are observed:

1. The appliance must be wired with a permanent live supply to each module. External controls should NOT be wired in series with either mains input. Controlling the mains input in this way will prevent the pump over-run sequence and may cause damage to the heat exchanger.

2. 230V AC outputs are provided on each module and may be used to control pumps or valves as required. They may also be used to provide status signals into any external BMS. The function of these outputs on the Master Module can be set in order to meet the function required by the system.

3. 230V AC inputs are provided to enable one Heating and one Hot water demand input.

The Hot Water input is used in conjunction with the DHW Tank Sensor, in OpenTherm mode the DHW enable bit also controls the demand.

4. SELV inputs are provided on the Master Module to enable the following demands:
 - Volts free input (OpenTherm)
 - 0-10V input
 - Outside Sensor

 - Hot water tank thermistor (Note: The hot water tank sensor only controls the Master Module. The Slave Module is disabled during a DHW demand.)

 - For the OpenTherm and 0-10V control options the OT Centres must be reconfigured.

5. An OpenTherm control Bus is provided on the Master Module to enable control and monitoring of the boiler by:
 - Modulating sequencer Kit
 - OpenTherm Room Control
 - OpenTherm Compatible BMS
 - OpenTherm Gateway
 - BACNET
 - MODBUS
 - LONWORKS

6. Volts free contacts are provided on each module for the following:
 - Burner On
 - Fault

7. An optional outside temperature sensor may be fitted to the Master Module for outside weather compensation. See Frame 20 for connection details.

8. A Safety Interlock Kit may be fitted to each Module of the boiler if required.
18 MAINS AND CONTROL WIRING

Remove the two securing screws from the left hand side of the Installer connection cover.

From the rear of the appliance, feed the wiring for the electrical supply and controls into the two wiring conduits. All mains voltage cabling must be fitted using the LH conduit as seen from the rear. All SELV cables must be fitted using the RH conduit.

The 230VAC electrical supply is connected to the 3 pin connector block. Refer to diagram in Frames 20 & 21. All cables must be retained in the cable clamps or glands provided.

19 SEQUENCER CONTROL OF MULTIPLE BOILERS

In installations where the heat load is greater than the boiler capacity an ideal solution is to use multiple boiler arrangements.

The ideal way to control a multiple boiler installation is with our modulating sequencer.

See below a typical installation example with our modulating sequencer kit. This device is capable of controlling up to 5 boilers. Additional kits are required for greater than this up to a maximum of 20 boilers.

EXAMPLE
1. If a Pump is to be run directly from the boiler and the electrical current draw is 1.3A inductive or less then the pump can be connected directly into the CH Pump or DHW Pump connections, as appropriate. If the current draw is more than this then an external relay or contactor should be operated by the CH Pump or DHW Pump connection, with the external contact then powering the pump.

2. The Lockout Volt Free Relay contacts will close 4 minutes after a Fault occurs.

3. The Burner On Volt Free Relay contacts will close when the Burner is on.

4. Only Ideal Outside Sensor and DHW Tank Sensor kits should be connected to the boiler.

5. The External Interlock connection is only used in conjunction with the External Interlock Kit. This can be configured for 230V or 24V operation.

6. The Volts Free contacts can also be used for 230V or 24V signalling circuits.

7. DHW may use either the DHW Tank Sensor Kit or a 230V Tank Thermostat. These inputs function in any mode of operation. In OpenTherm mode the DHW enable is also present in the OpenTherm data.
1. If a Pump is to be run directly from the boiler and the electrical current draw is 1.3A inductive or less then the pump can be connected directly into the CH shunt or DHW Pump connections, as appropriate. If the current draw is more than this then an external relay or contactor should be operated by the CH Pump or shunt Pump connection, with the external contact then powering the pump.

2. The Lockout Volt Free Relay contacts will close 4 minutes after a Fault occurs.

3. The Burner On Volt Free Relay contacts will close when the Burner is on.

4. Only Ideal Outside Sensor and DHW Tank Sensor kits should be connected to the boiler.

5. The External Interlock connection is only used in conjunction with the External Interlock Kit. This can be configured for 230V or 24V operation.

6. The Volts Free contacts can also be used for 230V or 24V signalling circuits.
22 OT CENTER CONFIGURATION

The OT Centers on each module are factory pre-set as master and Slave Modules for CH ON/OFF call for heat.
To check the settings or to configure for alternative control options remove the OT Center and set switches “S1” and “S2” according to the tables below (See Frame 52 for details of how to remove and replace OT Centers).

<table>
<thead>
<tr>
<th>Position S2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Master - Module</td>
</tr>
<tr>
<td>2</td>
<td>Slave Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position S1</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Opentherm programmable room stat or sequencer kit</td>
</tr>
<tr>
<td>4</td>
<td>CH ON-OFF call for heat</td>
</tr>
<tr>
<td>5</td>
<td>0 to 10 V Input</td>
</tr>
</tbody>
</table>

Note. Both OT Centers (Master and Slave Modules) must be configured similarly.

23 FITTING OT CENTER

1. Locate the communication lead attached to the OT Center on the Master Module.
2. Plug in the RJ11 connector, then route the cable around the internal surface of the Controls enclosure locating it in each clip as shown.
3. Route the cable through the hole where the User Interface lead exits the Controls enclosure.
4. Clip the cable into the locating points across the inner panel at the front of the boiler, as shown.
5. Once you reach the Slave Module, once again route the cable around the internal surface of the Controls enclosure locating it in each clip as shown.
6. Plug remaining end into either socket on Slave Module OT Center.
25 INTERNAL WIRING - SLAVE MODULE
26 BASIC CONTROLS DISPLAY

IMAX XTRA EL USER INTERFACE

Mains On
The Boiler has two user interfaces, one on the Master Module and one on the Slave Module. The main functionality for controlling the boiler is accessed on the Master Module user interface, the Slave Module user interface has limited functionality.

When the mains to the Module is switched on a screen similar to the following will be displayed. Note. Any reference to Hot Water Demand will only be on the Master Module User Interface.

Standby Mode
If the Module has been switched to Standby Mode the following screen will be displayed.
No Boiler operation will take place with this setting. See Frame 27 to change to Summer or Winter setting.

Summer Mode
If the Master Module has been switched to Summer Mode a screen similar to the following will be displayed (line 5 may vary depending on setup).
Domestic Hot Water operation will take place with this setting but Central Heating will not.
See Frame 27 to enable Central Heating by changing to Winter setting.

Winter Mode
If there is no current Heat Demand a screen similar to the following will be displayed.

Domestic Hot Water Mode (DHW Thermistor) - Master Module Only
If there is an ongoing Domestic Hot Water Demand using a DHW Thermistor, screens similar to the following will be displayed.
Line 3 indicates the current operating State (Pre-Purge or Ignition or Burner On or Pump Overrun)
Burner Power and Hot Water Temp’ will vary as the boiler operates.
See Frame 27 for adjusting DHW Setpoint
See Frame 27 for configuring the boiler to use a DHW Thermistor.

Ideal

<table>
<thead>
<tr>
<th>Initialising</th>
<th>Please Wait</th>
<th>PCB</th>
<th>441.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI PCB</td>
<td></td>
<td>Pri’ PCB</td>
<td>01.AB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standby Mode</th>
<th>For Central Heating</th>
<th>select Winter Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For Hot Water</td>
<td>select Summer or Winter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Mode</th>
<th>For Central Heating</th>
<th>select Winter Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Hot Water Demand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switched Live</td>
<td>Off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter Mode</th>
<th>No Central Heating</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Hot Water Demand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OpenTherm Connected</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hot Water</th>
<th>OpenTherm Mode</th>
<th>Burner On</th>
<th>DHW Setpoint</th>
<th>65°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hot Water Temp’</td>
<td>65°C</td>
</tr>
</tbody>
</table>
27 BASIC CONTROLS DISPLAY CONTINUED......

Central Heating Mode
If there is an ongoing Central Heating Demand screens similar to the following will be displayed.
Line 3 indicates the current operating State (Pre-Purge or Ignition or Burner On or Pump Overrun).
Outside temperature will only be shown if an outside sensor is connected to the boiler.
Burner Power and Flow Temp will vary as the boiler operates.
See Frame 29 for adjusting the maximum Flow Setpoint.

Boiler Frost Protection Mode
If the either Module flow temperature drops below 5°C screens similar to the following will be displayed.
Line 3 indicates the current operating State (Pre-Purge or Ignition or Burner On or Pump Overrun).
Outside temperature will only be shown if an outside sensor is connected to the boiler.
Burner Power and Flow Temp will vary as the boiler operates.

System Frost Protection Mode
If an Outside Sensor is fitted and the Outside Temperature drops below the system frost protection temperature setpoint a screen similar to the following will be displayed.
Line 3 indicates the current operating State (Pre-Purge or Ignition or Burner On or Pump Overrun)
Flow Temperature and Outside Temperature will vary as the boiler operates.
See Frame 29 for adjusting the system frost protection temperature setpoint.

Cylinder Frost Protection Mode - Master Module only
If a Domestic Hot Water Thermistor is connected to the boiler and the DHW temperature drops below 5°C a screen similar to the following will be displayed.
Line 3 indicates the current operating State (Pre-Purge or Ignition or Burner On or Pump Overrun).
Burner Power, Hot Water Temp' and Outside Temp' will vary as the boiler operates.
Outside temperature will only be shown if an outside sensor is connected to the boiler.

SETTING SUMMER, WINTER AND STANDBY OPERATION
Note that Standby Mode will disable Domestic Hot Water and Central Heating, Summer Mode will disable Central Heating.

Press SELECT and a screen similar to the following will be displayed
The kW output number in the 1st line will vary depending on the maximum output of the boiler.

Press + and - to change to required setting, press ENTER to store.
Rotate the KNOB anti-clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.
VIEWING THE STATE OF THE MODULE INPUTS
Press SELECT and a screen similar to the following will be displayed:
The kW output number in the 1st line will vary depending on the maximum output of the boiler.

<table>
<thead>
<tr>
<th>Module</th>
<th>State of Inputs</th>
<th>State of Outputs</th>
<th>Fault History</th>
<th>Show Hours Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal imax XLM 1240 kW</td>
<td>Set Off/Sum/Win</td>
<td>State of Inputs</td>
<td>Set Off/Win</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>Ideal imax XLS 1240 kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rotate KNOB clockwise until a screen similar to the following is displayed:

Press SELECT and a screen similar to the following will be displayed:
The state of the inputs will vary as the boiler operates.
Press SELECT to exit this option.
Rotate the KNOB anti-clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.

VIEWING THE STATE OF THE BOILER OUTPUTS
Press SELECT and a screen similar to the following will be displayed:
The kW output number in the 1st line will vary depending on the maximum output of the boiler.

<table>
<thead>
<tr>
<th>Module</th>
<th>State of Outputs</th>
<th>Fault History</th>
<th>Show Hours Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal imax XLM 1240 kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideal imax XLS 1240 kW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rotate KNOB clockwise until a screen similar to the following is displayed:

Press SELECT and a screen similar to the following will be displayed:
The state of the outputs will vary as the boiler operates.
Press SELECT to exit this option.
Rotate the KNOB anti-clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.

VIEWING THE FAULT HISTORY OF THE MODULE
Press SELECT and a screen similar to the following will be displayed:
The kW output number in the 1st line will vary depending on the maximum output of the boiler.

<table>
<thead>
<tr>
<th>Module</th>
<th>State of Outputs</th>
<th>Fault History</th>
<th>Show Hours Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal imax XLM 1240 kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideal imax XLS 1240 kW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rotate KNOB clockwise until a screen similar to the following is displayed:

Press SELECT and a screen similar to the following will be displayed:
The Fault History will vary depending on the operation of the boiler.
Press SELECT to exit this option.
Rotate the KNOB anti-clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.

VIEWING THE BOILER HOURS RUN
Press SELECT and a screen similar to the following will be displayed:
The kW output number in the 1st line will vary depending on the maximum output of the boiler.

<table>
<thead>
<tr>
<th>Module</th>
<th>State of Outputs</th>
<th>Fault History</th>
<th>Show Hours Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal imax XLM 1240 kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideal imax XLS 1240 kW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rotate KNOB clockwise until a screen similar to the following is displayed:

Press SELECT and a screen similar to the following will be displayed:
The times will vary depending on the operation of the boiler.
Press SELECT to exit this option.
Rotate the KNOB anti-clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.

continued
IMAX XTRA EL USER INTERFACE - ADVANCED OPERATING INSTRUCTIONS

0-10V OPERATION
When the boiler is set to 0-10V operation, refer to the graph below.

0-10V Temperature Control is governed by the following relationship. The 0-10V input ONLY controls the CH mode of the boiler.

ENABLING VALVE POWER OPEN/VALVE POWER CLOSED/SHUNT PUMP - MASTER MODULE ONLY
The Master Module default setting is that the CH Pump output will only be On for a CH Demand and the DHW Pump output will only be on for a DHW Demand.
This can be changed so that the CH Pump output controls the system pump and the DHW Pump output operates a Valve (power open or power shut)
This can also be changed so that the CH Pump output controls a system pump and the DHW Pump output controls a shunt pump.
Press SELECT and then hold + and - down together for more than 5s, the following screen will be displayed (Installer mode is not permanently on).

CHANGING THE MAXIMUM FLOW TEMPERATURE SETPOINT - MASTER MODULE ONLY
Boiler default setting is that maximum flow temperature setpoint is 80°C
This feature limits the maximum flow temperature that can be requested by the external control system, either On/OFF, OpenTherm or 0-10V.
Press SELECT and then hold + and - down together for more than 5s, the following screen will be displayed.

CHANGING THE MINIMUM FLOW TEMPERATURE SETPOINT - MASTER MODULE ONLY
Boiler default setting is that minimum flow temperature setpoint is 30°C
This feature limits the minimum flow temperature that can be requested by the external control system, either On/OFF, OpenTherm or 0-10V.
Press SELECT and then hold + and - down together for more than 5s, the following screen will be displayed.
30 IMAX XTRA EL USER INTERFACE - ADVANCED OPERATING INSTRUCTIONS CONTINUED....

CHANGING THE SYSTEM FROST PROTECTION TEMP. SETPOINT - MASTER MODULE ONLY

Note that System Frost Protection Function is only operational if an Outside Sensor has been connected.

The CH pump is switched on if the Outside Temp. is less than the System Frost Protection Temp.

The CH pump is switched off if the Outside Temp. is more than the System Frost Protection Temp. +5°C.

The boiler default setting is that the system frost protection temp. setpoint is -2°C.

Press SELECT and then hold + and - down together for more than 5s, the following screen will be displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
</tr>
<tr>
<td>Set Off/Sum/Win</td>
</tr>
<tr>
<td>State of Inputs</td>
</tr>
</tbody>
</table>

Press SELECT and the following screen will be displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
</tr>
<tr>
<td>Set Off/Sum/Win</td>
</tr>
<tr>
<td>State of Inputs</td>
</tr>
</tbody>
</table>

CHANGING THE SYSTEM FROST PROTECTION TEMP. SETPOINT - MASTER MODULE ONLY

The CH pump is switched on if the Outside Temp. is less than the System Frost Protection Temp.

The CH pump is switched off if the Outside Temp. is more than the System Frost Protection Temp. +5°C.

The boiler default setting is that the system frost protection temp. setpoint is -2°C.

Press SELECT and then hold + and - down together for more than 5s, the following screen will be displayed.

Rotate the KNOB clockwise until the following screen is displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
</tr>
<tr>
<td>Sys Frost Protect</td>
</tr>
<tr>
<td>State of Inputs</td>
</tr>
<tr>
<td>State of Inputs</td>
</tr>
</tbody>
</table>

Press + and - to change to required setting, press ENTER to store.

Rotate the KNOB clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.

REVERTING TO FACTORY SETTINGS

Press SELECT, hold + and - together for more than 5s, the following screen will be displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
</tr>
<tr>
<td>Set Off/Sum/Win</td>
</tr>
<tr>
<td>State of Inputs</td>
</tr>
</tbody>
</table>

Rotate the KNOB clockwise until the following screen is displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
</tr>
<tr>
<td>Sys Frost Protect</td>
</tr>
<tr>
<td>Anti-Legion Temp'</td>
</tr>
<tr>
<td>Anti-Legion Enable</td>
</tr>
</tbody>
</table>

Press ENTER and a screen similar to the following will be displayed.

<table>
<thead>
<tr>
<th>Factory Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you sure?</td>
</tr>
<tr>
<td>Press Enter to Reset</td>
</tr>
<tr>
<td>Press Select not to Reset</td>
</tr>
</tbody>
</table>

Press SELECT then Rotate the KNOB clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.
CHANGING THE ANTI-LEGIONELLA TEMPERATURE - MASTER MODULE ONLY

Note Anti-Legionella Temp. Function is only operational if a DHW Thermistor has been connected. Care should be taken reducing this temp. as unsafe conditions could result. Press SELECT and then hold + and - down together for more than 5s, the following screen will be displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
<th>Normal Operation</th>
<th>Set Off/Sum/Win</th>
<th>State of Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Legion Temp'</td>
<td>Normal Operation</td>
<td>Set Off/Sum/Win</td>
<td>State of Inputs</td>
</tr>
</tbody>
</table>

Rotate the KNOB clockwise until the following screen is displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
<th>Normal Operation</th>
<th>Anti-Legion Enable</th>
<th>Normal Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Legion Temp'</td>
<td>Normal Operation</td>
<td>Anti-Legion Enable</td>
<td>Normal Operation</td>
</tr>
</tbody>
</table>

Press SELECT and the following screen will be displayed.

<table>
<thead>
<tr>
<th>Anti-Legion Temp'</th>
<th>70°C</th>
</tr>
</thead>
</table>

Press + and - to change to required setting, press ENTER to store. Rotate the KNOB clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.

DISABLING THE ANTI-LEGIONELLA FUNCTION - MASTER MODULE ONLY

Note that the Anti-Legionella Temperature Function is only operational if a Domestic Hot Water Thermistor has been connected. Care should be taken in disabling this function as an unsafe condition could result. Press SELECT and then hold + and - down together for more than 5s, the following screen will be displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
<th>Normal Operation</th>
<th>Anti-Legion Enable</th>
<th>Normal Operation</th>
</tr>
</thead>
</table>

Rotate the KNOB clockwise until the following screen is displayed.

<table>
<thead>
<tr>
<th>Installer Mode</th>
<th>Anti-Legion Enable</th>
<th>Normal Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Legion Enable</td>
<td>Normal Operation</td>
<td></td>
</tr>
</tbody>
</table>

Press SELECT and the following screen will be displayed.

<table>
<thead>
<tr>
<th>Anti-Legion Enable</th>
<th>On</th>
</tr>
</thead>
</table>

Press + and - to change to required setting then press ENTER to store. Rotate the KNOB clockwise until Normal Operation is highlighted again and press SELECT to return to normal operation.
INSTALLATION

32 IMAX XTRA EL WITH EXTERNAL CONTROLS VIA SWITCHED LIVE, 0-10V INPUT OR OPENTHERM - DEMAND INPUTS ON MASTER MODULE ONLY

Note that the boiler requires a 2 minute pump overrun period. The boiler warranty will be invalid if this is not provided.

It is recommended that the pump overrun functionality is achieved by connecting the pump or pump control to the boiler CH Pump connections (see diagram), although this functionality can be replicated with external controls (for example a Building Management System).

If the CH Pump connection is used and the electrical current draw is 1.3A inductive or less then the pump may be connected directly into the CH Pump connection.

If the current draw is more than this then an external relay or contactor should be operated by the CH Pump connection, with the external relay then powering the pump.

For DHW operation, the DHW enable signal and Tank Sensor must always be present.

EXTERNAL CONTROLS - VIA SWITCHED LIVE

EXTERNAL CONTROLS - VIA 0-10V INPUT, CH ONLY

EXTERNAL CONTROLS - VIA OPENTHERM
33 COMMISSIONING AND TESTING

A. ELECTRICAL INSTALLATION

1. Checks to ensure electrical safety should be carried out by a competent person.
2. ALWAYS carry out the preliminary electrical system checks, i.e. earth continuity, polarity, resistance to earth and short circuit, using a suitable meter.
3. From turning the power on the fan will run for 4.5mins if in standby mode.

WARNING. Whilst effecting the required gas soundness test and purging air from the gas installation, open all windows and doors, extinguish naked lights and DO NOT SMOKE.

B. GAS INSTALLATION

1. The whole of the gas installation, including the meter, should be inspected and tested for soundness and then purged in accordance with the recommendations of the relevant standards listed on page 4, by the installer.
 In IE refer to I.S.813:2002.

34 INITIAL LIGHTING

Ensure the individual boiler modules are commissioned separately to avoid cross contamination of flue products. To facilitate this, ensure the SLAVE boiler is set to Standby (see user manual) and set the MASTER boiler to winter mode.

1. Check that the system has been filled and the boiler is not air locked - air in the boiler could damage the heat exchanger.
2. Check that all the drain cocks are closed and any valves in the flow and return are open.
3. Check that the GAS SERVICE COCK IS ON.
4. Fill the condensate trap with water before putting the unit into operation (see Frame 54 for condensate trap removal).
5. Check the indication on the pressure gauge. If the system pressure is less than 1 bar the installation should be filled up first.
6. Switch the electricity supply ON and check that all the external controls are calling for heat.
7. The boiler will commence the ignition sequence. If after 5 attempts the boiler has failed to light then it will lock out. Press the reset button to restart the ignition sequence.

ADJUSTING THE CO2%

Note. Turning the Throttle and Offset anti clockwise will increase the CO2.

Turning the Throttle and Offset clockwise will decrease the CO2.

If the CO2% is outside of these limits, the gas valve needs to be adjusted. If the max CO2 % needs adjustment, this is altered by the throttle screw on the front of the gas valve.

If the min CO2% needs adjustment, this is altered by the offset screw. When making CO2 adjustments, the max must be checked or adjusted BEFORE checking and if necessary adjusting the min CO2.

Once the CO2 has been set, check the CO/CO2 ratio. This must not exceed 0.004. If the CO/CO2 ratio is above 0.004 and the CO2 levels at max and min are correct, switch off the appliance and contact Ideal Boilers.

Refer to Frame 39, Servicing Schedule.

IMAX XTRA EL ~ Flue CO₂ % measurements (hot condition)

<table>
<thead>
<tr>
<th></th>
<th>715</th>
<th>790</th>
<th>940</th>
<th>1090</th>
<th>1240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Rate* (100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.5% (±0.5%)</td>
</tr>
<tr>
<td>Min Rate* (20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.0% (±0.5%)</td>
</tr>
</tbody>
</table>

* When testing Max & Min Rates; Ensure the controls display shows 100% or 20% burner power respectively.
35 OPERATING SEQUENCE

Standby

Heat demand on? yes

Pump On

Temp. < setpoint? yes

APS open fan stand-off? no

APS closed? no

Fan on

APS closed? yes

Fan On 10s Fan Pre-purge

Spark Generator On
Gas Valve On
5s Ignition Period

Flame detected? yes

Spark Generator Off
1st Stabilisation Period

Burner Output controlled relative to Heat Demand by varying Fan Speed

Burner On

Demand off or Temp. >setpoint? no

Gas Valve Off

yes

Demand On & Temp. <Set point & Anti-cycle done? no

Post Purge

yes

Fan Off

Pump Overrun

yes

Heat Demand Off?

Pump off

Standby

Note1. The fan runs for 4 mins after the burner switches off

Note2. Ignition cycle occurs 5 times before lockout
36 GENERAL CHECKS

Make the following checks for correct operation.

1. The correct operation of ANY secondary system controls should be proved. Operate each control separately and check that the main burner or circulating pump, as the case may be, responds.

2. Water circulation system;
 a. With the system HOT examine all water connections for soundness.
 b. With the system still HOT, turn off the gas, water and electricity supplies to the boiler and drain down to complete the flushing process.

 c. Refill and vent the system, clear all air locks and again check for water soundness.
 d. Balance the system.

3. Check the condensate drain for leaks and check it is discharging correctly.

4. Finally set the controls to the User’s requirements.

Note. If an optional programmer kit is fitted then refer to the instructions supplied with the kit.

37 HANDING OVER

ROUTINE OPERATION

Draw the attention of the boiler owner or his representative to the User Guide. Give a practical demonstration of the lighting and shutting down of the boiler.

Describe the function of the boiler and system controls and show how they are adjusted and used.

Hand these Installation and Servicing/User's Instructions and to the customer and request him to keep them in a safe place for ready reference. For IE, it is necessary to complete a "Declaration of Conformity" to indicate compliance to the appropriate standard.

IMPORTANT. Point out to the owner that the boiler must have regular maintenance and cleaning, at least annually, in order to ensure reliable and efficient operation. Regular attention will also prolong the life of the boiler and should preferably be performed at the end of the heating season.

After installation and commissioning please complete the Commissioning Sheet, at the rear of this book, before handover to the customer. For IE, it is necessary to complete a “Declaration of Conformity” to indicate compliance to I.S. 813:2002.

Recommend that a contract for this work should be made with the regional gas authority or a Gas Safe Registered Engineer. In IE servicing work must be carried out by a competent person.
38 SAFETY

It is the law that any service work must be carried out by a Gas Safe Registered Engineer. In IE service work must be carried out by a competent person.

WARNING. Always turn off the gas supply at the gas service cock, and switch off and disconnect the electricity supply to the appliance and any external controls before servicing or replacing components.

To replace parts in the water circuit, it will be necessary to isolate the water and drain the boiler.

NOTE.
When the burner switch is in the off position the boiler control module remains live.

IMPORTANT.
After completing the servicing or replacement of components always:
• Test for gas soundness.
• Check the water system is correctly filled and free of air. Air in the boiler could cause damage to the heat exchanger.
• Check the jacket front panel is correctly fitted. Fit the controls cover in place.
• With the system hot examine all water connections for soundness.
• Check the gas rate and measure the combustion CO/CO₂ content. The CO/CO₂ ratio of the flue gas should not be greater than 0.004 ratio and the CO₂ should match the values given in Frame 34.
• Carry out functional checks as appropriate.
• Ensure the boiler has adequate ventilation for any gas remaining within unisolated pipework.

Note. When undertaking any servicing or replacement of parts it is essential that any gasket or seal is checked for signs of wear or damage and is replaced as necessary.
39 SERVICING SCHEDULE

Ensure this process is repeated for both the MASTER and SLAVE Module separately, refer to page 3.

To ensure the continued safe and efficient operation of the appliance it is recommended that it is checked at regular intervals and serviced as necessary. The frequency of servicing will depend upon the installation condition and usage but should be carried out at least annually.

Ideal Boilers does not accept any liability resulting from the use of unauthorised parts or the repair and servicing of appliances not carried out in accordance with the Company’s recommendations and specifications.

Note. Some aluminium oxide build-up within the heat exchanger assembly is quite normal with this type of condensing boiler. Though removal and cleaning is recommended annually, the heat exchanger, sump and condensate trap must be inspected and cleaned after a maximum of 2 years operation.

1. Light the boiler and carry out function checks, noting any operational faults.
2. Run the boiler for 10 minutes and then check the gas consumption rate. Refer to procedure opposite on how to force the burner to maximum rate.
3. Connect a suitable gas analyser to the sampling point fitted in the flue adapter. For correct boiler operation the CO/CO₂ ratio of the flue gas should not be greater than 0.004 ratio and the CO₂ values should match those in table 1. If this is the case the gas input is at least 90% of the nominal.
4. Remove and clean the burner. Refer to Frame 42.
5. Inspect the heat exchanger through the burner opening. If there are signs of aluminium oxide build up, spray water down the flueways. Refer to Frame 42.
6. Remove the sump cover and scrape out any deposits. Refer to Frame 45.
7. Remove the condensate trap and flush through with water. Refer to Frame 46.
8. Check that the flue terminal is unobstructed and that the flue system is sealed correctly.
9. Remove the gas valve filter and check that there is no debris. Clean or replace as necessary. Refer to Frame 44.
10. Whilst burner is removed, ensure spark gap between electrodes is 5mm (±1mm).
11. After completion of servicing refer to Frame 38 for reference to final safety checks.
12. Complete the service record in the Rear of this book.

Note.

When undertaking any servicing or replacement of parts it is essential that any gasket or seal is checked for signs of wear or damage and is replaced as necessary.

SETTING TO FIXED OUTPUTS

The individual Master and Slave modules may be set to Maximum or Minimum rate independently on their respective User Interface.

Ensure that there is a current CH demand to the boiler (e.g. the CH Switched Live is on).

Ensure that there is sufficient heating load on the boiler to allow it to run at maximum rate.

Wait until the boiler is at 100% then press SELECT and the following screen will be displayed.

The kW output number in the 1st line will vary depending on the maximum output of the boiler.

<table>
<thead>
<tr>
<th>SETTING TO FIXED OUTPUTS</th>
<th>NORMAL OPERATION</th>
<th>SETTING TO FIXED OUTPUTS</th>
<th>NORMAL OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal imax XLM 1240 kW</td>
<td>Normal Operation</td>
<td>Ideal imax XLS 1240 kW</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>Normal Operation</td>
<td></td>
<td>Normal Operation</td>
<td></td>
</tr>
<tr>
<td>Set Off/Sum/Win</td>
<td></td>
<td>Set Off/Win</td>
<td></td>
</tr>
<tr>
<td>State of Inputs</td>
<td></td>
<td>State of Inputs</td>
<td></td>
</tr>
<tr>
<td>Rotate KNOB clockwise</td>
<td></td>
<td>Rotate KNOB clockwise</td>
<td></td>
</tr>
<tr>
<td>until the following</td>
<td></td>
<td>until the following</td>
<td></td>
</tr>
<tr>
<td>screen is displayed</td>
<td></td>
<td>screen is displayed</td>
<td></td>
</tr>
<tr>
<td>Ideal imax XLS 1240 kW</td>
<td></td>
<td>Ideal imax XLS 1240 kW</td>
<td></td>
</tr>
<tr>
<td>Normal Operation</td>
<td></td>
<td>Normal Operation</td>
<td></td>
</tr>
<tr>
<td>Set Off/Win</td>
<td></td>
<td>Set Off/Win</td>
<td></td>
</tr>
<tr>
<td>State of Inputs</td>
<td></td>
<td>State of Inputs</td>
<td></td>
</tr>
<tr>
<td>State of Outputs</td>
<td></td>
<td>State of Outputs</td>
<td></td>
</tr>
</tbody>
</table>

Press SELECT and the following screen will be displayed:

<table>
<thead>
<tr>
<th>SETTING TO FIXED OUTPUTS</th>
<th>NORMAL OPERATION</th>
<th>SETTING TO FIXED OUTPUTS</th>
<th>NORMAL OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal imax XLM 1240 kW</td>
<td>Normal Operation</td>
<td>Ideal imax XLS 1240 kW</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>Normal Operation</td>
<td></td>
<td>Normal Operation</td>
<td></td>
</tr>
<tr>
<td>Set Off/Sum/Win</td>
<td></td>
<td>Set Off/Win</td>
<td></td>
</tr>
<tr>
<td>State of Inputs</td>
<td></td>
<td>State of Inputs</td>
<td></td>
</tr>
<tr>
<td>State of Outputs</td>
<td></td>
<td>State of Outputs</td>
<td></td>
</tr>
</tbody>
</table>

Press + and - until the following screen is displayed:

<table>
<thead>
<tr>
<th>SETTING TO FIXED OUTPUTS</th>
<th>NORMAL OPERATION</th>
<th>SETTING TO FIXED OUTPUTS</th>
<th>NORMAL OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal imax XLM 1240 kW</td>
<td>Normal Operation</td>
<td>Ideal imax XLS 1240 kW</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>Normal Operation</td>
<td></td>
<td>Normal Operation</td>
<td></td>
</tr>
<tr>
<td>Set Off/Sum/Win</td>
<td></td>
<td>Set Off/Win</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td>Winter</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>Press - for more</td>
<td>Minimum</td>
<td>Press - for more</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>Maximum</td>
<td></td>
</tr>
</tbody>
</table>

Press ENTER and the boiler will go to Maximum Rate for 10 minutes. Operation will be automatically reset at the end of 10 minutes.

To set to minimum, repeat the above selecting "minimum" setting.
40 CASING REMOVAL

TO REMOVE FRONT AND SIDE PANELS

1. Refer to frame 38.
2. Lift the control pod upwards to disengage. This can then be located in the raised position using the location hooks.
3. Remove the 2 securing screws from the front panel.
4. Angle the front panel forward and lift to disengage the panel and remove.
5. Slide the front side panel forward and lift to disengage from the fixing locations.
6. Slide the rear side panel forward and lift to disengage from the fixing locations.
7. Repeat steps 5 and 6 to remove the remaining side panels.
8. Re-fit in reverse order.

Note: only the two front side panels have noise dampening insulation fitted

41 REMOVAL OF BURNER MANIFOLD

1. Refer to Frames 38 & 40.
2. Remove the four nuts securing the burner hood elbow to the heat exchanger.
3. Remove the four bolts securing the burner hood elbow to the interface plate.
4. Lift the burner hood elbow and carefully clear the heat exchanger studs.
5. To Refit: Inspect the sealing gaskets for damage and replace as necessary.
6. Align the burner head elbow and engage the studs on the heat exchanger.
7. Loosely fit the four securing bolts to locate the elbow on the interface plate.
8. Loosely fit the four securing nuts to the heat exchanger studs.
9. With all fixings in position, tighten in sequence to ensure the burner hood elbow is correctly secured on the interface plate and the heat exchanger.
10. Check for any leakage on all seals.
42 BURNER REMOVAL / CLEANING OF BURNER & HEAT EXCHANGER

1. Refer to Frame 38.
2. Refer to Frames 40 & 41 for removal of burner manifold.
3. Draw the burner out of the heat exchanger.
4. The burner can be cleaned using compressed air or a vacuum. The metal fibre outer surface must not be brushed. If the burner is showing signs of damage it must be replaced.
5. Re-assemble in reverse order replacing any seals/gaskets which show signs of wear. When refitting, ensure the burner is correctly engaged so the burner flange fits flush into the recess.
6. Refer to Frame 38 for final safety checks.

With the burner removed the heat exchanger may now be cleaned. To remove any debris flush the heat exchanger with water, if possible from a pressurised supply, taking care to protect any electrical components against moisture. Ensure the heat exchanger is fully flushed.
43 IGNITION / DETECTION ELECTRODE TESTING / REPLACEMENT

Refer to Frame 38 & 40.

IGNITION PROBE
1. Disconnect the lead from the spark generator and the earth lead from the ignition probe assembly.
2. Remove the two nuts securing the ignition probe assembly.
3. Withdraw the probe assembly carefully.
4. To refit, carefully insert the probe assembly engaging the securing stud.
5. Replace the two nuts and tighten. Re-connect the earth lead and the spark generator lead.

IONISATION PROBE
6. Disconnect the wire from the ionisation probe. Disconnect the earth lead from the ionisation probe assembly.
7. Remove the two nuts securing the probe assembly.
8. Remove the ring tag earth connection.
9. Withdraw the probe assembly carefully.
10. To replace, carefully insert the probe assembly into the heat exchanger engaging the securing studs. Re-fit the ring tag earth connection. Replace the securing nuts and tighten. Refit the earth connection and the ionisation probe lead.

SPARK GAP
The spark gap can be measured in-situ while the burner hood and burner are removed. Ensure the spark gap is 5mm (±1mm).

IONISATION
The ionisation current should be checked at min and max rate compared to the table below.

<table>
<thead>
<tr>
<th></th>
<th>Max Rate</th>
<th>μA</th>
<th>> 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Rate</td>
<td>μA</td>
<td>> 10</td>
<td></td>
</tr>
</tbody>
</table>

44 GAS VALVE FILTER REPLACEMENT

1. Refer to Frame 38 & 40.
2. Ensure the boiler is drained
3. Remove the two hex head screws at the bottom of the inlet side of the gas valve.
4. Remove the location section of the body.
5. Withdraw the gas valve inlet filter.
6. Examine and replace as necessary.
7. Refit in reverse order.
45 INSPECTING & CLEANING THE SUMP

1. Refer to Frame 38 & 40.
2. Remove the inspection cover which is secured with eight bolts.
3. The RHS inspection cover will be accessible for removal on the Master module and the LHS inspection cover will be accessible on the Slave module.
4. Remove any debris and flush with water if necessary.
5. To re-fit the sump inspection panel inspect the o-ring seal for damage and replace if necessary.
6. Align the sump inspection cover and secure with the 8 bolts.

46 CLEANING CONDENSATE TRAP

1. Refer to Frame 38.
2. Unscrew the top fitting of the condensate trap.
3. Unscrew the fitting at the flue outlet drain point.
4. Unscrew the condensate outlet fitting.
5. Unscrew bracket and remove trap.
6. Unscrew the base of the trap and drain into a bucket.
7. Remove all debris, flushing with water if necessary.
8. Re-fit the base of the trap.
9. Re-fit in reverse order.
10. Pour water into the flue sample point to ensure the condense trap is re-filled before the unit is operated after servicing.
47 REMOVAL OF FAN AND GAS VALVE ASSEMBLY

Refer to Frame 40.
Remove Air inlet duct. Refer to Frame 55.

REMOVAL OF GAS VALVE

Refer to Frame 38.
1. Disconnect all electrical connections from the fan and gas valve.
2. Disconnect all air pipe connections from the fan and gas valve.
3. Disconnect the gas valve from the gas supply pipe by removing the two rear hex head screws and loosening the two front screws at the RHS of the gas valve.
4. Remove the four nuts which retain the burner hood elbow to the heat exchanger.
5. Remove the four bolts to release the burner hood elbow from the interface plate.
6. Slide the fan and gas valve assembly forward on the interface plate.
7. Remove the three nuts retaining the gas valve assembly to the fan scroll and remove the gas valve assembly (taking care due to the weight of the gas valve).
8. Remove the four screws retaining the gas valve to the mounting flange.
9. Fit the replacement valve in reverse. Refer to Frame 38.

REMOVAL OF FAN

With the gas valve removed the fan can now be removed.
10. Remove the air mixer collector by sliding it off the 3 threaded rods.
11. Slacken the two rear bolts securing the fan to the interface plate and remove the front two bolts.
12. With the interface plate partially retracted, lift the fan to release from the plate and withdraw, ensuring the motor casing does not clash with the chassis.
13. Fit the replacement fan in reverse order, ensuring the fan is pushed fully home to support the weight. Refer to Frame 38.
48 WATER PRESSURE SWITCH REPLACEMENT

1. Refer to Frames 38 & 40.
2. Ensure the boiler is drained down.
3. Disconnect the two wires.
4. Using a suitable size spanner on the hexagon undo the water pressure switch and remove.
5. Refit in reverse order using a suitable sealing medium.
6. Refit and vent check the water pressure switch connection for leaks.
7. Minimum system pressure is 1.0bar. 1.5bar is the recommended fill pressure.

49 THERMISTOR (X3) REPLACEMENT

1. Refer to Frames 38 & 40.
2. Disconnect the 2 wires from each thermistor.
3. Using a suitable sized spanner on the hexagon undo the thermistor and remove.
4. Refit in reverse order using a suitable sealing medium.
5. Refit and vent check the thermistor for leaks.
6. Minimum system pressure is 1.0bar. 1.5bar is the recommended fill pressure.

50 SPARK GENERATOR REPLACEMENT

1. Refer to Frames 38 & 40.
2. Disconnect the spark generator lead from the ignition probe.
3. Disconnect the electrical supply plug.
4. Remove the two securing screws and remove the spark generator.
5. Refit in reverse order ensuring the earth lead is correctly secured.
51 BOILER CONTROL PCB REPLACEMENT

1. Refer to Frames 38 & 40.
2. Remove all PCB electrical connections.
3. Remove the PCB carefully by pulling gently towards you at each mounting point.
4. Release the PCB from the mounting posts carefully and remove.
5. To refit, align the PCB with the mounting posts and push the PCB carefully to engage the mounting posts.
6. Refit the connectors relating to the wiring diagram in Frame 24 & 25.

52 OT CENTER REPLACEMENT

1. Remove front panel & control pod on the Master Module (refer to Frame 40)
 By removing the front panels on the Master Module it will enable access to the Slave Module OT Center.
 To access the Master Module OT Centre, remove the RH side panels.
2. Squeeze tab and pull to remove connection lead.
3. Firmly pull up and down on module to remove.
4. Replace with new module after setting switches ‘S1’ and ‘S2’ according to Frame 22.
5. Plug in communication lead to either common socket.
6. Re-assemble in reverse order ensuring OT Center module is pushed fully home to its backing plate.
7. Refer to Frame 38 for final safety checks.
53 USER INTERFACE REPLACEMENT

1. Refer to Frames 38 & 40.
2. Remove two nuts securing the rear cover of the user interface.
3. Remove the four screws securing the user interface to the front control pod and remove the assembly from the front of the control pod.
4. Refit in reverse order.

54 CONDENSATE TRAP REPLACEMENT

1. Refer to Frame 38.
2. Unscrew the top fitting of the condensate trap.
3. Unscrew the fitting at the flue outlet drain point.
4. Unscrew the condensate outlet fitting.
5. Remove the two screws holding the white retaining bracket and remove.
6. Replace condensate trap as required.
7. Re-fit in reverse order.
8. Pour water into the heat exchanger to ensure the condense trap is re-filled before the unit is operated after servicing.

55 FLEXIBLE AIR DUCT REPLACEMENT

1. Refer to Frames 38 & 40.
2. Slacken the hose clip on the flexible duct at the fan inlet.
3. Slacken the hose clip on the flexible duct at the air inlet.
4. Carefully remove the flexible duct and hose clips.
5. To refit: Check the flexible duct for damage and replace as necessary.
6. Position the flexible duct over the air inlet and secure with the hose clip.
7. Position the flexible duct over the fan inlet and secure with the hose clip.
56 HIGH VOLTAGE HARNESS REPLACEMENT

1. Refer to Frames 38 & 40.
2. Remove the mains connection from the following spark generator, fan and gas valve.
3. Disconnect the harness from the ionisation assembly lead.
4. Unclip the harness tracing the route back to the control box.
5. Remove the connectors from the PCB.
6. Remove the three bottom connectors on LHS of control box.
7. Remove the earth post nut and release the earth connections.
8. Feed the harness through the control box and remove.
9. To refit feed the new harness through the control box.
10. Fit the three bottom connections and the PCB connectors.
11. Fit the earth wires and secure with the nut.
12. Feed the harness back to the components listed above.
 Use clips to retain in position and connect.

MASTER MODULE

SLAVE MODULE
57 LOW VOLTAGE HARNESS REPLACEMENT

1. Refer to Frames 38 & 40.
2. Remove the connections from the two air pressure switches.
3. Remove the connections from the three Thermistors.
4. Remove the connections from the Water Pressure Switch.
5. Remove the connectors from the PCB.
6. Remove the top two connectors on LHS of control box.
7. Feed the harness back through the control box and remove.
8. To refit, feed the new harness through the control box and fit the top two LHS connectors.
9. Feed the harness back to the components listed above using the retaining clips and connect.

58 REPLACEMENT OF AIR PRESSURE SWITCH TUBES

1. Refer to Frames 38 & 40.
2. Disconnect the two tubes from the faulty APS.
3. Disconnect the electrical connections from the faulty APS, taking note of their positions.
4. Unscrew the APS from the bracket.
5. Replace faulty APS with new component. If variable APS is being replaced, ensure switching pressure is set for correct boiler size as per table shown.
6. Re-connect tubes and electrical connections, ensuring pipes are fitted the same as diagram shown.

<table>
<thead>
<tr>
<th>Boiler Size (kW)</th>
<th>Sump Outlet Air Pressure Setting (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>715</td>
<td>200Pa</td>
</tr>
<tr>
<td>790</td>
<td>200Pa</td>
</tr>
<tr>
<td>940</td>
<td>300Pa</td>
</tr>
<tr>
<td>1090</td>
<td>300Pa</td>
</tr>
<tr>
<td>1240</td>
<td>400Pa</td>
</tr>
</tbody>
</table>
FAULT FINDING

59 FAULT FINDING CHART - MAIN MENU

Overheat Lockout
Fill System to a min. of 1.0 bar Vent System Check Pump Spins Free Reset Boiler

Go to Frame 60 Overheat Lockout

Ignition Lockout
Check Gas to Boiler Check Condensate Pipe Refer to Instructions Reset Boiler

Go to Frame 61 Ignition Lockout

Too Many Resets
Turn Boiler Power Off Turn Boiler Power On

5 resets within 15 mins Turn power off and on

False Flame Lockout
Check Flame Sense Electrode Check Flame Sense Electrode Wiring

Go to Frame 62 False Flame Lockout

Low Water Pressure
Air Pressure/Fan Fault Check Air/Flue/Sump Fill System to 1.0 bar Check Fan/APS,WPS,FGPS

Go to Frame 63 Low Water Pressure

Flame Loss
Check Gas to Boiler Check Condensate Pipe Check Flue System

Go to Frame 64 Flame Loss

Fan Fault
Check Fan Wiring Check Fan

Go to Frame 65 Fan Fault

Flow Thermistor Fault
Check Flow Thermistor Wiring Check Flow Thermistor (10K @ 25°C,2K at 66°C)

Go to Frame 66 Flow Thermistor Fault

Return Thmr Fault
Check Return Thermistor Wiring Check Return Thmr (10K @ 25°C,2K at 66°C)

Go to Frame 66 Return Thermistor Fault

Outside Sensor Fault
Check Outside Sensor Wiring Check Outside Sensor (10K @ 25°C,2K at 66°C)

Go to Frame 67 Outside Sensor Fault

Low Mains Voltage
Less than 160V Check Local Generator Contact Electricity Provider

Contact Electricity Provider

PCB Fault
Ensure BCC fitted Replace PCB

Replace Main PCB

Flow/Return Reversed
Check Pump Check System Pipework

Go to Frame 68 Flow/Return Reversed

Cylinder Thermistor Fault
Check Cylinder Thermistor Wiring Check Cylinder Thmr (10K @ 25°C,2K at 66°C)

Go to Frame 69 Cylinder Thermistor Fault

Ext’ Interlock Off
External Interlock Operated Reset Interlock

Go to Frame 78 Ext’ Interlock Off

BCC Fault
Ensure BCC fitted correctly Replace BCC

Go to Frame 70 BCC Fault

No CH but DHW OK

Go to Frame 72 No CH but DHW OK

No DHW but CH OK

Go to Frame 73 No DHW but CH OK

Blank Display

Go to Frame 74 Blank Display

Flow Temperature Setpoint cannot be increased to 90°C

Ensure Flow Temp is not limited within Installer Mode. See Frame 29

Boiler does not respond to 0-10V Input

Go to Frame 75 0-10V Interface

Flow Temperature Setpoint cannot be reduced to 80°C

Ensure Flow Temp is not limited within Installer Mode. Go to Frame 29

Error 20

Go to Frame 62 False Flame Lockout
FAULT FINDING

60 OVERHEAT LOCKOUT

Has PCB just been replaced?
- **Yes**: Reset Boiler
- **No**: Are the boiler and CH/DHW system filled with water and are all isolation valves and radiator valves open?
 - **Yes**: Fill and vent the system and open all isolation valves, then reset the boiler.
 - **No**: Is the flow/return differential across the boiler in excess of 35°C?
 - **Yes**: Check the flow and return thermistors (refer to Frame 66)
 - **No**: Check that the pump is rotating freely. Is the differential now below 20°C?
 - **Yes**: Replace the pump, then reset the boiler
 - **No**: Reset the boiler

61 IGNITION LOCKOUT

If the boiler is reset, does it ignite for a short time and then extinguish?
- **Yes**: Check the detection electrode and associated harness for continuity, visual condition and position (refer to Frame 43). Check if the condensate pipe is blocked, refer to Frame 63.
- **No**: Is the dynamic gas pressure available at the boiler > 15mbar?
 - **Yes**: Check gas supply and rectify fault
 - **No**: Is the following voltage available at the Gas Valve? approximately 240Vac
 - **Yes**: Unplug the Gas Valve, is the resistance between the outside pins between 9-10MΩ?
 - **Yes**: Check Spark Generator and associated Harness for continuity, visual condition and position (refer to Frame 43 & 50). Are these functioning correctly?
 - **No**: Replace Spark Generator and Harness as necessary
 - **No**: Check Ignition Electrode and associated Harness for continuity, visual condition and position (refer to Frame 43). Are these functioning correctly?
 - **Yes**: Replace Syphon and condensate drain pipework for blockage and rectify if necessary. Boiler now working OK?
 - **No**: Replace Gas Valve

62 FALSE FLAME LOCKOUT / ERROR 20

Reset the boiler, does boiler work OK?
- **Yes**: Check routing and integrity of internal boiler wiring is OK. Check condition of Flame Sense Electrode and replace if deteriorated.
- **No**: Disconnect the electrical connection to the Flame Sense Electrode. Is there continuity between the Electrode and earth?
 - **Yes**: Replace Flame Detection Electrode
 - **No**: Check routing and integrity of internal boiler wiring
FAULT FINDING

63 LOW WATER PRESSURE / AIR PRESSURE SWITCH / BLOCKED CONDENSATE

Are the boiler and CH system filled with water to 1.0 bar and all Isolation and Radiator Valves open? no Fill and vent the system and open all Isolation Valves

yes

Does the black wire from the Water Pressure Switch to the PCB have continuity and is it securely connected? no Ensure wiring has continuity and is securely connected

yes

Check syphon and condensate drain Pipework for blockage. Is there a blockage? yes Clear blockage and check boiler operates

no

Check air pressure tubes are fitted correctly and not retaining water. Are they damaged / kinked? yes Replace any damaged tubes / remove water or reconnect

no

Is the APS connected to sump and is sump set to correct value 715kW-200Pa, 790kW-200Pa, 940kW-300Pa, 1090kW-300Pa, 1240kW-400Pa (Refer to Frame 58) no Unscrew cover and set to correct value. (Refer to Frame 58)

yes

Are all electrical connections in place and on correct terminal? no Connect all terminals using wiring diagram in this manual

yes

Is flue resistance is >-10Pa and <100Pa when operating at max heat input? no Redesign flue to ensure >-10Pa and <100Pa

yes

Is the flue blocked or restricted? yes Clear blockage and test boiler is operating ok.

no

Is the non-return valve operational? no Check there is 230V at motor housing

yes

Is Air inlet restricted or blocked? yes Clear blockage and test boiler is operating ok.

no

If optional filter is fitted, check this is not blocked.
64 FLAME LOSS

- **If the boiler is Reset, does the boiler Ignite for a short time and then Extinguish**
 - yes: Check the Detection Electrode and associated Harness for continuity, visual condition and position (refer to Frame 43). Check if the Condensate Pipe is blocked. Check if the Flue is blocked. Replace as necessary.
 - no: Is the Gas Pressure available at the boiler > 15mbar?
 - no: Check Gas Supply and rectify fault
 - yes: Is the following voltage available at the Gas Valve? (approximately 240Vac)
 - no: Check wiring from Gas Valve to PCB and replace if necessary, otherwise replace the main PCB
 - yes: Check Spark Generator and associated Harness for continuity, visual condition and position (refer to Frame 50). Are these functioning correctly?
 - no: Replace Spark Generator and Harness as necessary
 - yes: Check Ignition Electrode and associated Harness for continuity, visual condition and position (refer to Frame 43). Are these functioning correctly?
 - no: Replace Ignition Electrode and associated Harness as necessary
 - yes: Check Syphon and condensate drain pipework for blockage and rectify if necessary. Boiler now working OK?
 - no: Replace Gas Valve
 - yes: Rectify wiring & connections

- **Does the wiring from the Fan to the PCB have secure connections at both ends and has it not deteriorated? Does the wiring have continuity?**
 - yes: Is there 230Vac at the blue and brown connections to the 3 way connection on the Fan?
 - no: Replace main PCB
 - yes: Replace Fan
 - no: Rectify wiring & connections
66 THERMISTOR FAULT

Disconnect the electrical connection to the Flow/Return/Heat Exchanger thermistor as required and check the resistance using a suitable multimeter connected across the thermistor’s terminal pins.

- At 25°C expect 9,700 - 10,300 Ω
- At 60°C expect 2,400 - 2,600 Ω
- At 85°C expect 1,000 - 1,100 Ω

Is the thermistor value correct?

- Yes
 - Is there continuity between the PCB and the thermistor?
 - Yes: Replace main PCB
 - No: Check and replace wiring as necessary

- No: Fit a new thermistor

67 OUTSIDE SENSOR FAULT

Is the wiring securely connected at both the boiler and Outside Sensor?

- Yes: Disconnect the wires to the Outside Sensor. Check the resistance using a suitable multimeter connected across the thermistor’s terminal pins.
 - At 0°C expect 32,000 - 33,000 Ω
 - At 10°C expect 19,000 - 21,000 Ω
 - At 20°C expect 12,000 - 13,000 Ω
 - Is the thermistor value correct?
 - Yes: Ensure the wiring has continuity and is securely connected
 - No: Fit a new Outside Sensor

- No: Securely connect the wiring at both the boiler and Outside Sensor

68 FLOW/RETURN REVERSED

Is the Pump connected the correct way?

- Yes: Check that the system pipework is correct
- No: Reverse Pump
69 CYLINDER THERMISTOR FAULT

Is a DHW Thermistor connected to the boiler?

yes → Connect the thermistor

no → Is the wiring securely connected at both the boiler and cylinder thermistor?

yes → Disconnect the wires to the cylinder thermistor. Check the resistance using a suitable multimeter connected across the thermistor’s terminal pins. At 25°C expect 9,700 - 10,300 Ω. At 60°C expect 2,400 - 2,600 Ω. At 85°C expect 1,000 - 1,100 Ω. Is the thermistor value correct?

yes → Does the cylinder thermistor wiring between the boiler terminal strip and the PCB have continuity and is it securely connected?

yes → Replace main PCB

no → Ensure the wiring has continuity and is securely connected

no → Fit a new cylinder thermistor

no → Securely connect the wiring at both the boiler and cylinder thermistor

70 BCC FAULT

Is the correct BCC for the boiler securely inserted into the slot at the front left of the PCB? (identified by the label on the BCC)

yes → Securely attach the correct BCC for the boiler onto the PCB. Note: ensure the correct orientation of the BCC by placing the side marked “TOP” upwards.

no → Replace the BCC with a new BCC (that is correct for the boiler). After switching power on and resetting the boiler does the fault disappear?

no → Replace main PCB

71 OT CENTER FAULT FINDING

1. Top LED (Red)
 Regular flashing indicates correct communication with OT Center and electrical control module located to the right of the OT Center. If regular flashing is not evident check:
 a. Integrity of wiring between OT Center and PCB.
 b. Correct communication with PCB. (Refer to Frame 52 & 56).

2. Middle LED (Yellow)
 This indicates failure of boiler. If yellow LED is showing check fault finding codes.

3. Bottom LED (Green)
 Regular flashing indicates correct Center communication with OT Center and connecting OT Center on adjoining module. If regular flashing is not evident check correct fitment of both OT Centers and adjoining communications lead. (Refer to Frame 52 & 56).
72 NO CH BUT DHW OK

Is the boiler set for Winter operation?
- no: Set for Winter operation (see Frame 27)
- yes: Ensure that the Timer and Room Thermostat are calling for heat

Are the external controls calling for Heat?
- no: Open the Radiator Valves
- yes: Does the wiring from the boiler to the OpenTherm device have continuity?

Are the Radiator Valves open?
- no: Open the Radiator Valves
- yes: There is no voltage from the external controls. This is not a boiler fault. Ensure voltage is supplied to the boiler by correcting external wiring

Is an OpenTherm device connected to the boiler (note that the Ideal Prog Room Stat is an OpenTherm device)?
- no: Rectify wiring from boiler to OpenTherm device
- yes: Does the wiring from the boiler to the OpenTherm device have continuity?

Is there 230Vac at (A)?
- no: Rectify wiring from boiler to OpenTherm device
- yes: Check wiring from PCB to (B)

Is there 230Vac at (B)?
- no: Check wiring connections
- yes: Check wiring connections

Is there 230 across the CH relay coil?
- no: Check relay operation & wiring to the OT Centre
- yes: Rectify wiring to external CH pump

Is there approximately 0V DC across the normally open contacts?
- no: Check relay operation & wiring to the OT Centre
- yes: Rectify wiring to external CH pump

Does wiring to external CH Pump have continuity and is wired to the correct connections?
- no: Rectify wiring to external CH pump
- yes: Replace the CH pump

Is the CH pump stuck
- no: Replace the CH pump
- yes: Free the pump

All Mains Voltages are measured between the test point and neutral
73 NO DHW BUT CH OK

Are the Timer and Cylinder Thermostat/Thermistor calling for Heat?
 yes
 no

Is an OpenTherm device connected to the boiler (note that the ideal programmable Room Stat is an OpenTherm device)?
 yes
 no

Is there 230Vac at (C)?
 yes
 no

Does the system have a DHW Pump or Power Open Diverter Valve?
 yes
 no

Is the boiler correctly set for a DHW Pump or Power Open Diverter Valve?
 yes
 no

Is there 230Vac at (D)?
 yes
 no

Is there 230 across the DHW relay coil?
 yes
 no

Is there approximately 0V DC across the normally open contacts?
 yes
 no

Does wiring to external DHW Pump have continuity and is it wired to the correct connections?
 yes
 no

Is the boiler set for DHW priority (default setting)?
 yes
 no

Is the DHW Pump/Valve stuck?
 yes
 no

Ensure that the Timer and Cylinder Stat/Thermistor are calling for heat (if a DHW Thermistor is used see Frame 27 for setting DHW Temp.)

Does the wiring from the boiler to the OpenTherm device have continuity?
 yes
 no

There is no voltage from the Timer/Cylinder Stat. This is not a boiler fault. Ensure voltage is supplied to the boiler by correcting external wiring.

Rectify wiring from boiler to OpenTherm device

Is the system correctly set for a Power Closed Diverter Valve?
 yes
 no

Set boiler correctly (See Frames 26 & 27)

Check wiring from DHW relay to (D) and onwards to Master Module OT Centre (5V SELV)

Check wiring connections

Check the relay operation & wiring to the OT Centre

Rectify wiring to external DHW pump/valve

Set boiler for DHW priority (see Frames 26 & 27)

Replace the DHW pump/valve

Free the pump/valve

All Mains Voltages are measured between the test point and neutral
FAULT FINDING

74 NO DISPLAY

Is there 230Vac to the boiler at (E)?

- yes
 - Supply power to the boiler
- no
 - Connect the wiring from the terminal block to the main PCB securely

Is the wiring from the boiler terminal block to the main PCB connected securely?

- yes
- no
 - Check for shorts on Pumps/Diverter Valve/Fan/Spark Generator/Gas Valve and replace Fuse

Is the Fuse on the main PCB OK?

- yes
 - Connect the cable from the main PCB to the user interface PCB securely
- no

Is the cable from the main PCB to the user interface PCB connected securely?

- yes
 - Replace cable from main PCB to user interface PCB
- no

Does the cable from the main PCB to the user interface PCB have continuity and is it un-damaged?

- yes
 - Replace the user interface PCB, still no display?
- no
 - Replace main PCB

All Mains Voltages are measured between the test point and neutral.
75 0-10V INTERFACE

Are the OT Centres set to accept a 0-10V Input? no
 yes Set the OT Centres to accept a 0-10V input (see Frame 22)

Is the boiler set to Winter Mode? no
 yes Set the boiler to Winter Mode (see Frame 27)

Is a voltage of between 2V and 10V being supplied to (F), with positive and negative connected correctly? no
 yes Ensure between 2V and 10V is correctly connected to these terminals from the external device

Is the wiring from the boiler terminal strip to the Master Module OT Centre securely connected and does it have continuity? no
 yes Ensure that the wiring is securely connected and has continuity

Replace main PCB

76 EXTERNAL INTERLOCK OFF

Is an External Interlock connected to the boiler? no
 yes Ensure that a link wire is securely connected across the terminals marked “External Interlock” in the boiler terminal strip

Has the External Interlock operated? yes
 no Reset the External Interlock

Does the wiring from the Interlock Relay (mounted within the boiler) to the terminal strip have continuity and is it securely connected? no
 yes Ensure the wiring has continuity and is securely connected

Replace the Interlock Relay Kit
When replacing any part on this appliance use only spare parts that you can be assured conform to the safety and performance specification that we require. Do not use reconditioned or copy parts that have not been clearly authorised by Ideal. Failure to do so could affect safety or performance of this appliance.

Comprehensive spares parts information and details of approved Ideal Parts Distributors are available on www.idealparts.com

Our Parts team are also available to help with your Ideal Spare Parts enquiries on 01482 498665.

When calling, and to ensure we can provide you with the most accurate parts information, please ensure you have the following to hand;

- Boiler Model
- Boiler Serial Number
<table>
<thead>
<tr>
<th>Customer Name</th>
<th>Boiler Model & Size</th>
<th>Site Address</th>
<th>Postcode</th>
<th>Contact Name:</th>
<th>Tel:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commissioning Date</th>
<th>Boiler Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option Kits fitted
- Open
- Interlock Kit
- Weather Comp
- RS Frame/Header Kit
- Plume Kit

- Other:

Ventilation
- Is Ventilation to BS 5440 (0-70kW)
 - YES
 - NO

- Is Ventilation to BS 6640 (70kW+)
 - YES
 - NO

- Option Kits fitted
 - Natural
 - Mechanical

Natural Gas inlet pressure (static) mbar

Gas manifold pressure dynamic-single boiler firing mbar

Gas manifold pressure dynamic-all boiler firing mbar

Burner pressure (if required) mbar

Gas rate kW/hr

Detection Electrode µA

Flue gas temperature (gross) ºC

Ambient temperature ºC

O₂ %

CO₂ %

CO ppm

CO / CO₂ ratio

Water flow temperature (stabilised) ºC

Water return temperature (stabilised) ºC

Temp. difference ºC

Control stat operation checked and set to: ºC

Lockout and safety functions checked Y/N

Flue draught max. and min. firing conditions if applicable

Flue back pressure (in operation) Pa

Flue back pressure (in stand-by mode) Pa

Flue checked for spillage Y/N

Flue damper if required Y/N

Condensate drain connected / syphon fitted / cleaned Y/N

Engineer's Notes / Advice / Remedial Actions (also list any other gas appliances installed in the plant room)

Gas Safe ID number

Warning Notice Issued (No.)

Engineers Name (please print)

Engineer Signature:

Customer Signature:
It is recommended that your heating system is serviced regularly and that the appropriate Service Interval Record is completed.

Service Provider

Before completing the appropriate Service Record below, please ensure you have carried out the service as described in the manufacturer's instructions. Always use the manufacturer’s specified spare part when replacing controls.

<table>
<thead>
<tr>
<th>SERVICE 01</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static)</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers</td>
<td>mbar</td>
</tr>
<tr>
<td>CO2</td>
<td>%</td>
</tr>
<tr>
<td>CO / CO2 Ratio</td>
<td>%</td>
</tr>
<tr>
<td>Control Stat Setting</td>
<td>ºC</td>
</tr>
<tr>
<td>Temp. Diff</td>
<td>ºC</td>
</tr>
<tr>
<td>Burner Pressure (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Gas Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Ambient Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Flue Draught (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Back Pressure</td>
<td>pa</td>
</tr>
<tr>
<td>Water/Other Safety interlock proved</td>
<td>Y/N</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 02</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static)</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers</td>
<td>mbar</td>
</tr>
<tr>
<td>CO2</td>
<td>%</td>
</tr>
<tr>
<td>CO / CO2 Ratio</td>
<td>%</td>
</tr>
<tr>
<td>Control Stat Setting</td>
<td>ºC</td>
</tr>
<tr>
<td>Temp. Diff</td>
<td>ºC</td>
</tr>
<tr>
<td>Burner Pressure (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Gas Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Ambient Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Flue Draught (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Back Pressure</td>
<td>pa</td>
</tr>
<tr>
<td>Water/Other Safety interlock proved</td>
<td>Y/N</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 03</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static)</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers</td>
<td>mbar</td>
</tr>
<tr>
<td>CO2</td>
<td>%</td>
</tr>
<tr>
<td>CO / CO2 Ratio</td>
<td>%</td>
</tr>
<tr>
<td>Control Stat Setting</td>
<td>ºC</td>
</tr>
<tr>
<td>Temp. Diff</td>
<td>ºC</td>
</tr>
<tr>
<td>Burner Pressure (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Gas Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Ambient Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Flue Draught (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Back Pressure</td>
<td>pa</td>
</tr>
<tr>
<td>Water/Other Safety interlock proved</td>
<td>Y/N</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 04</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static)</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler</td>
<td>mbar</td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers</td>
<td>mbar</td>
</tr>
<tr>
<td>CO2</td>
<td>%</td>
</tr>
<tr>
<td>CO / CO2 Ratio</td>
<td>%</td>
</tr>
<tr>
<td>Control Stat Setting</td>
<td>ºC</td>
</tr>
<tr>
<td>Temp. Diff</td>
<td>ºC</td>
</tr>
<tr>
<td>Burner Pressure (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Gas Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Ambient Temp.</td>
<td>ºC</td>
</tr>
<tr>
<td>Flue Draught (if applicable)</td>
<td>mbar</td>
</tr>
<tr>
<td>Flue Back Pressure</td>
<td>pa</td>
</tr>
<tr>
<td>Water/Other Safety interlock proved</td>
<td>Y/N</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>
SERVICE RECORD

It is recommended that your heating system is serviced regularly and that the appropriate Service Interval Record is completed.

Service Provider

Before completing the appropriate Service Record below, please ensure you have carried out the service as described in the manufacturer’s instructions. Always use the manufacturer’s specified spare part when replacing controls.

<table>
<thead>
<tr>
<th>SERVICE 05</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static) mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers mbar</td>
<td></td>
</tr>
<tr>
<td>CO₂ %</td>
<td></td>
</tr>
<tr>
<td>CO / CO₂ Ratio %</td>
<td></td>
</tr>
<tr>
<td>Control Stat Setting ºC</td>
<td></td>
</tr>
<tr>
<td>Temp. Diff ºC</td>
<td></td>
</tr>
<tr>
<td>Burner Pressure (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Gas Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Ambient Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Flue Draught (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Back Pressure pa</td>
<td></td>
</tr>
<tr>
<td>Water/Other Safety interlock proved Y/N</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 06</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static) mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers mbar</td>
<td></td>
</tr>
<tr>
<td>CO₂ %</td>
<td></td>
</tr>
<tr>
<td>CO / CO₂ Ratio %</td>
<td></td>
</tr>
<tr>
<td>Control Stat Setting ºC</td>
<td></td>
</tr>
<tr>
<td>Temp. Diff ºC</td>
<td></td>
</tr>
<tr>
<td>Burner Pressure (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Gas Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Ambient Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Flue Draught (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Back Pressure pa</td>
<td></td>
</tr>
<tr>
<td>Water/Other Safety interlock proved Y/N</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 07</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static) mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers mbar</td>
<td></td>
</tr>
<tr>
<td>CO₂ %</td>
<td></td>
</tr>
<tr>
<td>CO / CO₂ Ratio %</td>
<td></td>
</tr>
<tr>
<td>Control Stat Setting ºC</td>
<td></td>
</tr>
<tr>
<td>Temp. Diff ºC</td>
<td></td>
</tr>
<tr>
<td>Burner Pressure (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Gas Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Ambient Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Flue Draught (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Back Pressure pa</td>
<td></td>
</tr>
<tr>
<td>Water/Other Safety interlock proved Y/N</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE 08</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No:</td>
<td></td>
</tr>
<tr>
<td>Engineer Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone No:</td>
<td></td>
</tr>
<tr>
<td>Gas Safe Register No:</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (static) mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - 1 Boiler mbar</td>
<td></td>
</tr>
<tr>
<td>Gas Inlet Pressure (dynamic) - all Boilers mbar</td>
<td></td>
</tr>
<tr>
<td>CO₂ %</td>
<td></td>
</tr>
<tr>
<td>CO / CO₂ Ratio %</td>
<td></td>
</tr>
<tr>
<td>Control Stat Setting ºC</td>
<td></td>
</tr>
<tr>
<td>Temp. Diff ºC</td>
<td></td>
</tr>
<tr>
<td>Burner Pressure (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Gas Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Ambient Temp. ºC</td>
<td></td>
</tr>
<tr>
<td>Flue Draught (if applicable) mbar</td>
<td></td>
</tr>
<tr>
<td>Flue Back Pressure pa</td>
<td></td>
</tr>
<tr>
<td>Water/Other Safety interlock proved Y/N</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>
Technical Training
The Ideal Technical Training Centre offers a series of first class training courses for domestic, commercial and industrial heating installers, engineers and system specifiers.
For details of courses please ring:........... 01482 498432

Ideal Boilers Ltd. pursues a policy of continuing improvement in the design and performance of its products. The right is therefore reserved to vary specification without notice.