INSTALLATION AND SERVICING

ECOMOD AHP60
14 and 18 kW

Air/water monobloc heat pump

When replacing any part on this appliance, use only spare parts that you can be assured conform to the safety and performance specification that we require. Do not use reconditioned or copy parts that have not been clearly authorised by Ideal.

For the very latest copy of literature for specification and maintenance practices visit our website www.idealcommercialboilers.com where you can download the relevant information in PDF format.
CONTENTS

1. REGULATIONS, RECOMMENDATIONS AND WARNINGS ... 5
 1.1. Applicable regulations and standards .. 5
 1.2. Recommendations and warnings ... 5

2. DESCRIPTION OF THE EQUIPMENT ... 15
 2.1. Designations and scope .. 15
 2.2. Packaging .. 15
 2.3. Definitions .. 15
 2.4. Technical data ... 16
 2.5. Description ... 20
 2.6. Operating principle .. 22

3. INSTALLATION .. 24
 3.1. Lifting and handling .. 24
 3.2. Location .. 25
 3.3. Installing the outdoor unit ... 25
 3.4. Installing the control unit .. 31
 3.5. Hydraulic connections .. 31
 3.6. Electrical connections .. 37

4. PRE-REQUISITES BEFORE COMMISSIONING .. 42
 4.1. Verification before switching on ... 42
 4.2. Switching On ... 43
 4.3. Commissioning ... 43
 4.4. Adjustment of the heat pump hydraulic flow .. 43
 4.5. Operating diagram ... 44
 4.6. HMI Navigation .. 46

5. CONTROL INTERFACE ... 47
 5.1. User interface ... 47
 5.2. “SET” setpoint MENU ... 48
 5.3. Sensor menu [TP] .. 49
 5.4. Error menu [Err] .. 49
 5.5. Operating hours menu [OHR] ... 49
 5.6. Parameter menu [Par] .. 49

6. TROUBLESHOOTING ... 50
 6.1. Troubleshooting of failures without error code .. 50
 6.2. Error codes and repair .. 50
 6.3. Inverter board errors .. 55
 6.4. Ohminic values of the different probes .. 56

7. MAINTENANCE OF THE OUTDOOR UNIT ... 57
 7.1. Draining water from outdoor unit ... 57
 7.2. Filling the outdoor unit with water ... 57
 7.3. Prolonged shutdown ... 57
 7.4. Periodic checks ... 58
8. END OF PRODUCT LIFE- ...68

Symbols used in this document

INFORMATION: This symbol draws attention to comments.

CAUTION: Failure to comply with these instructions may cause damage to the installation or to other objects.

DANGER: Failure to comply with these instructions may cause electrocution.

DANGER: Failure to comply with these instructions may cause injury and serious material damage.
1. REGULATIONS, RECOMMENDATIONS AND WARNINGS

1.1. Applicable regulations and standards

This outdoor heat pump has been designed in accordance with current regulations and must be used accordingly. See the list of standards on the back cover.

This device must be transported in compliance with the local laws.

This device and its refrigerant R32 must be handled in compliance with the application orders of the gas regulation. Specific guidelines related to the presence of Fluorine in the composition of the R32 fluid are specified in the European Union regulation n° 517/2014.

It must be installed in compliance with local or national regulations such as the RSD (Local sanitary Regulations), and in accordance with standard EN 378-3: 2016 concerning the installation of heat pumps.

The electrical connection must be made in compliance with the Current I.E.E. (BS7671) Wiring Regulations.

The hydraulic connection must be made in compliance with the local laws.

Regulations covering Maintenance

The appliance must be installed and maintained by an approved professional in accordance with the prevailing regulations and code of practice, in particular:

- The legislation on the handling of refrigerants.
- Current I.E.E. (BS7671) Wiring Regulations

CAUTION!

This device must be maintained by qualified personnel with a certificate of capacity for the handling of refrigerants.

1.2. Recommendations and warnings

1.2.1. Transport and storage

The outdoor appliance:

- must be stored in a place where the temperature is between -10°C and +50 °C with a relative humidity between 5 and 95%.
- must not be stacked,
- must be protected from humidity.

Transport and storage must comply with the national standards in force. In particular, according to the provisions (see below), the maximum total quantity per transport unit for flammable gases is 333 kg (net mass).

Handling

The outdoor unit must not be in a horizontal position during transport.

Transport in a horizontal position may damage the appliance by moving the refrigerant and damaging the compressor’s suspensions.

Damage caused by transportation in a horizontal position is not covered by the warranty.

If necessary, the outdoor unit may be tilted during manual handling (to go through a door or use a staircase). This operation must be conducted very carefully and the appliance must be immediately restored to the upright position.
1.2.2. **Unpacking the appliance**

Acceptance

With the carrier present, carefully check the general appearance of the packaging and the appliances. Check that the outdoor appliance has not been placed in a horizontal position. In the event of disagreement, write to the carrier within 48 hours mentioning all reserves and send a copy of this letter to the After Sales Department.

Before unpacking the appliance, check that there are no refrigerant leaks using a suitable detector. Check that there are no ignition sources near the unit. Smoking is forbidden near to the unit.

1.2.3. **Safety recommendations related to the presence of the R32 refrigerant**

The handling and installation of this outdoor appliance must only be performed by personnel that are duly trained, qualified and authorised to carry out these operations, according to the laws, directives and standards applicable in each country.

The EN378:2016 standard defines the framework of requirements to be met to manage each potential risk at each stage of the machine's life cycle. This standard was also used to design this machine.

In the absence of local building codes or safety standards, the installation and maintenance of the machine may follow the elements outlined in this standard; in particular, it is the responsibility of the installer and personnel performing operations on this machine to perform a risk analysis prior to any installation and work on the machine.

The elements indicated below are not exhaustive given the diversity of the possible installations and interventions; they cannot be considered as an undertaking as to the responsibility of Ideal heating. These elements cannot replace a risk analysis, which remains the responsibility of the installer and the personnel working on the machines.

<table>
<thead>
<tr>
<th>Designation</th>
<th>R32.</th>
</tr>
</thead>
</table>

INDICATION OF DANGERS

Main dangers: Asphyxia.

Specific dangers: The rapidity of evaporation can cause burns.

EMERGENCY MEASURES

General information

Do not give anything to persons who have fainted.

Inhalation:

Take the person to fresh air.

Use oxygen or artificial respiration if required.

Do not administer adrenaline or similar substances.

Contact with the eyes:

Rinse thoroughly with water for at least 15 minutes and seek medical attention.

Contact with the skin:

Rinse thoroughly with water for at least 15 minutes. Apply a sterile gauze.

Remove contaminated clothing immediately.

FIRE PREVENTION MEASURES

Extinguishers: Water spray, dry powder.

Specific dangers: Rupture or explosion of the recipient.

Specific methods: Cool down the recipients by spraying with water from a safe position. If possible, stop the product from leaking. If possible, use a water spray to hose down the smoke. Move the recipients well clear of the fire zone if possible without taking risks.

MEASURES IN THE EVENT OF AN ACCIDENTAL LEAK

Individual precautions:

Use personal protection equipment.

Evacuate the personnel to safe areas.

Eliminate ignition sources.

Ensure there is adequate ventilation.

Environmental precautions:

Try to stop the leak.

Cleaning methods:

Ventilate the area.
HANDLING AND STORAGE

Handling:
- Technical measures/precautions: Ensure that the premises have adequate air renewal/extraction.
- Recommendations for safe use: Do not breathe in the vapours or use aerosols.

Storage:
- Close tightly and store in a cool, dry, well-ventilated place. Keep in original recipients. Incompatible products: explosives, flammable materials, organic peroxide.

CONTROLLED EXPOSURE/INDIVIDUAL PROTECTION

Control parameters:
- DNEL: Derived No-Effect-Level (workers) long term, systemic effects, inhalation = 7035 mg/m3.
- PNEC: Predicted No Effect Concentration
 - Water (fresh water) = 0.142 mg/l
 - Aquatic, intermittent emissions = 1.42 mg/l
 - Sediments, fresh water = 0.534 mg/kg dry weight

Respiratory protection: Not necessary.
Protection of the eyes: Safety glasses.
Protection of the hands: Rubber gloves.
Hygiene measures: Do not smoke!

PHYSICAL AND CHEMICAL PROPERTIES

- **Colour:** Colourless.
- **Smell:** Ethereal. Hardly perceptible in low concentrations.
- **Boiling point:** -51.7 °C at atm. press.
- **Flash point:** 648 °C
- **Lower flammability level:** 13%
- **Upper flammability level:** 32%
- **Relative density of gas (air=1):** 1.8
- **Relative density of liquid (water=1):** 1.1
- **Solubility in water:** 280000 mg/l.

STABILITY AND REACTIVITY

- **Stability:** Stable in normal conditions.
- **Materials to be avoided:** Air, oxidising agents, humidity.
- **Hazardous decomposition products:** In normal conditions of storage and use, no hazardous decomposition product should be generated.

TOXICOLOGICAL INFORMATION

- **High toxicity:** LD/LC50/inhalation/4 hours/rat test = 1107000 mg/m3.
- **Local effects:** No known effects.
- **Long term toxicity:** No known effects.

ENVIRONMENTAL INFORMATION

- **Global warming potential:** GWP (R744=1): 675
- **Ozone damage potential ODp (R11=1):**
 - Of the ozone ODp (R11=1): 0
- **Disposal Considerations:** Comply with the supplier’s gas collection programme. Avoid direct emission into the atmosphere.
Specific warnings on the R32 refrigerant

The R32 refrigerant:
- is odourless;
- is slightly inflammable (A2L), but only in the presence of flames;
- Risk of explosion at air concentrations between the lower and upper flammability levels of the fluid, see refrigerant data sheet above.

It is essential to follow the following guidelines:
- do not smoke near to the appliance;
- put up no smoking signs near to the appliance;
- ensure that it is installed in a well-ventilated area;
- do not pierce or burn the appliance;
- do not position the appliance near to ignition sources, such as naked flames, electric heaters, etc.;
- any special work or repairs to the appliance must be carried out by specialised technicians or qualified personnel;

R32 refrigerant charge

The procedures described below must only be performed by specialised technicians or qualified personnel:
- ensure that other types of refrigerant do not contaminate the R32;
- keep the gas bottle in a vertical position when loading it;
- put a suitable label on the unit after loading it;
- do not load more refrigerant gas than needed;
- before loading, search for leaks before carrying out an operating test. This operation has two purposes, to control the quantity of refrigerant loaded and to check the circuit for leaks;
- after the operating test, we recommend carrying out another leak test;

Eliminating the R32 refrigerant

Follow the standardised procedures for collecting refrigerants, which may only be carried out by specialised technicians or qualified personnel, and return it to the supplier.

Precautions related to the installation of the refrigerant

If local construction codes or safety standards don’t exist, the information shown below are taken from the standard EN378: 2016 may be used for information; they may be used as a guide for the safe use of machines that use R32 as a refrigerant.

This outdoor unit must not be installed in a place that can the general public or untrained, qualified or approved persons can access.

It is designed to be installed outdoors, in open air. A shelter or alcove in which at least one of the longest walls is open to the outside air by louvers having a free area of 75% and covering at least 80% of the wall (or the equivalent if more than one wall is open to the outside air), is considered to be open to the outside air.

It must be located so that no refrigerant leaks can enter the building and/or endanger people and property. Therefore:

It must not be possible for the refrigerant to spill into a ventilation duct, under a door, hatch or similar opening in case of a leak. For this reason, the installer must ensure that there is a distance of at least 1m between the unit and any such opening. When a shelter is provided for the refrigerant appliance in the open air, this shelter must be equipped with a natural or forced ventilation device.

For refrigerant appliances installed outdoors in a location where a release of refrigerant may stagnate, e.g. below ground level, the installation must meet the requirements for gas detection and machine room ventilation.
1.2.4. Recommendations for hydraulic and electrical circuits

■ Hydraulic connections

The connection must comply with good engineering practices according to the regulations in force.
Reminder: Make the assembly seals according to good engineering practices in force for plumbing work:
- Use suitable seals or gaskets (fibre seals, O rings).
- Use Teflon or hemp tape.
- Use sealant (synthetic as required).

■ Characteristics of the water for the appliance

To ensure that the appliance is working correctly, the water must be filtered correctly (see the indications at the beginning of this section) and the quantity of dissolved must be minimised. Refer to chapter 3.6.4. For further recommendations.

The maximum authorised values are as follows:

Use glycol water if the room where the primary/secondary storage tank(s) is/are installed is not frost-free; we recommend that this situation be temporary so as not to alter the system's performance permanently. Do not forget to flush the system once the room is frost-free. If glycol water is used, plan an annual control of the glycol quality. Use monopropylene type glycol only. The recommended concentration should not exceed 40%.

If glycol is not used, trace the pipes electrically outside.

- In certain installations, the presence of different metals can cause corrosion problems; in this case, the formation of metal particles and sludge in the hydraulic circuit is seen.
- Please refer to the chapter "Treatment of domestic and heating water" in our price catalogue

- It is also necessary to ensure that the treated water does not become aggressive for the circuit.

MAXIMUM AUTHORISED PHYSICAL-CHEMICAL CHARACTERISTICS AUTHORISED FOR THE INSTALLATION WATER

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>7.5 - 9</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>100 - 500 μS/cm</td>
</tr>
<tr>
<td>Total hardness</td>
<td>8.0 - 15.1 °f</td>
</tr>
<tr>
<td>Temperature</td>
<td>< 65°C</td>
</tr>
<tr>
<td>Oxygen content</td>
<td>< 0.1 ppm</td>
</tr>
<tr>
<td>Max. quantity of glycol</td>
<td>40%</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>< 0.3 ppm</td>
</tr>
<tr>
<td>Chlorine ions (Cl-)</td>
<td>< 50 ppm</td>
</tr>
</tbody>
</table>
Electrical connections

Ensure that the general electrical power supply has been cut off before starting any repair work.

Characteristics of the electrical power supply

The electrical installation must be conducted in accordance with the regulations in effect and in particular to Current I.E.E. (BS7671) Wiring Regulations.

The electrical installation must be equipped with a differential protection.

This appliance is designed to operate under a nominal voltage of 400 V +/- 10%, 50 Hz.

For installations without neutral, a galvanic isolating transformer must be used that is earthed on the secondary side.

The electrical connections will only be made when all of the other assembly operations (attachment, assembly,...) have been carried out.

Never use a socket for the power supply.

CAUTION!

The contract with the energy supplier must cover the maximum electrical requirement of the installation.

The outdoor unit must be supplied directly by a dedicated line, protected on the outgoing side by a type B differential protection, and with a proximity switch allowing the contacts to be separated in all poles (see paragraph 3.7.3. “Current source”).

<table>
<thead>
<tr>
<th>Percentage of glycol</th>
<th>Freezing point [°C]</th>
<th>Efficiency correction factor</th>
<th>Absorbed power correction factor</th>
<th>Water flow rate correction factor</th>
<th>Loss of head correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>-3.2</td>
<td>0.985</td>
<td>1</td>
<td>1.02</td>
<td>1.08</td>
</tr>
<tr>
<td>20%</td>
<td>-7.8</td>
<td>0.98</td>
<td>0.99</td>
<td>1.05</td>
<td>1.12</td>
</tr>
<tr>
<td>30%</td>
<td>-14.1</td>
<td>0.97</td>
<td>0.98</td>
<td>1.10</td>
<td>1.22</td>
</tr>
<tr>
<td>40%</td>
<td>-22.3</td>
<td>0.965</td>
<td>0.97</td>
<td>1.14</td>
<td>1.25</td>
</tr>
</tbody>
</table>
Example of recommended connection diagram (non exhaustive)
1.2.5. **General safety rules**

Before starting any operation on the units, each operator must be fully familiar with the operation of the machine and its controls and have read and understood all the information contained in this manual.

| The removal and/or handling of any safety device is strictly prohibited. |
| Children and unaccompanied disabled people are not allowed to use the device. |
| It is forbidden to touch the device barefoot and with wet or wet parts of the body. |
| Any cleaning operation is prohibited when the main switch is in position « ON ». |
| It is forbidden to pull, unplug or twist the electrical cables coming out of the device, even if it is disconnected from the power supply. |
| It is forbidden to stand on the device, to sit on it and/or to put objects of any kind on it. |
| It is forbidden to splash the device or project water on it. |
| It is forbidden to disperse, deposit or leave within the reach of children the packaging material (cardboard, staples, plastic bags ... etc.) because it can be a potential source of danger. |
| Any ordinary or extraordinary maintenance operation must be carried out at a standstill, without power supply. |
| Do not put your hands or introduce screwdrivers, wrenches or other tools into moving parts. |
| The machine manager and the maintenance technician must receive the appropriate training and instruction for their tasks in safe conditions. |
| Operators should be familiar with personal protective equipment and accident prevention rules prescribed by national and international laws and standards. |

1.2.6. **Worker safety**

Anywhere the unit is installed, the applicable local laws regarding worker safety and health must be accurately respected and enforced by each employer. We therefore recall that:

| It is forbidden to handle or replace parts of the machine without the express permission of the manufacturer. These interventions release the manufacturer from any civil or criminal liability. |
| The use of components, consumables or spare parts other than those recommended by the manufacturer and/or mentioned in this manual may constitute a danger to operators and/or damage the machine. |
| The operator’s workstation must be kept clean, tidy and free of objects which may restrict his freedom of movement. The workstation must be sufficiently illuminated for the performance of the planned operations. Insufficient or excessive lighting can present risks. |
| Ensure the appropriate ventilation of the work zone is always guaranteed. Ensure the air suction systems are operating correctly, in optimal conditions, and comply with the legal measures. |
| During the design phase, the indications contained in UNI EN ISO 14738 were followed with regard to workstations on machines and the lifting limits imposed by UNI ISO 11228-1 were evaluated. |
Be sure to maintain a posture that does not cause fatigue when installing and maintaining the unit. Also check the weight of any component before handling it.

The unit works with the refrigerant R32, included in the list of greenhouse gases (GWP 675) that meet the requirements of EU Regulation No. 517/2014 known as “F-GAS” (mandatory in the European area). One of the provisions of this Regulation requires operators working in installations using greenhouse gases to hold a certificate issued or recognised by the competent authority attesting that they have passed an examination authorising them to carry out such work. In detail:

- Up to 3 kg of total refrigerant contained in the appliance: Category 2 certificate.
- More than 3 kg of total refrigerant contained in the appliance: category 1 certificate.

Refrigerant R32 in gaseous form is heavier than air, if it is dispersed in the environment, it tends to concentrate strongly in poorly ventilated areas. Inhalation can cause dizziness and suffocation and, in case of contact with open flames or hot objects, lethal gases may be emitted (see Refrigerant Material Safety Data Sheet).

You should know that refrigerants may not develop an odor.

For any intervention on the heat pump system:

| Wear appropriate PPE (especially gloves and goggles). |
| Ensure that the workplace is well ventilated. Do not work in closed rooms or ditches with low air recirculation. |
| Do not handle coolant near hot components or open flames. |
| Avoid any dispersion of the refrigerant in the environment and pay particular attention to accidental leaks of pipes and/or fittings, even after draining the system. |
| Make sure there is a fire extinguisher near the unit. |

1.2.7. Personal protective equipment

When using and maintaining units, it is necessary to provide for the use of personal protective equipment such as:

- **Clothing:** People who perform maintenance or work on the system must wear clothing that does not leave parts of the body uncovered, because during maintenance it is possible to come into contact with hot or sharp surfaces. Avoid clothing that can cling to or be sucked in by the airflow.

- **Safety shoes with non-slip soles,** especially in environments where the floor is slippery.

- **Gloves:** Protective gloves must be worn during cleaning and maintenance interventions.

- **Mask and goggles:** Goggles and a respiratory protective mask should be used during cleaning operations.
2. DESCRIPTION OF THE EQUIPMENT

2.1. Designations and scope

Ecomod is hot water production system for heating networks or thermodynamic production of domestic hot water.

2.2. Packaging.

<table>
<thead>
<tr>
<th>Outdoor unit model</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOMOD 14</td>
<td>AH090911</td>
</tr>
<tr>
<td>ECOMOD 18</td>
<td>AH090913</td>
</tr>
<tr>
<td>ECOMOD 14 AC</td>
<td>AH090912</td>
</tr>
<tr>
<td>ECOMOD 18 AC</td>
<td>AH090914</td>
</tr>
</tbody>
</table>

Other accessories according to connection - see Ecomod manual, heating application or DHW application. The AC version has an anti-corrosion treatment of the evaporator. The performance of the heat pump can be impacted by up to 2% compared to the values communicated in chapter 2.4.1.

2.3. Definitions

Change to monobloc heat pump: to be installed outdoors only for heating and/or domestic hot water application.

CAUTION: The minimum admissible temperature for the storage of the units is 5°C.

air/water: The outdoor air is the energysource. This energy is transmitted to the primary water circuit by the heat pump.

inverter: The fan and compressor speeds are modulated to suit the heat requirements which allows the noise level to be reduced. This technology makes it possible to save energy by avoiding high starting currents and by adjusting the power to the load.

COP (coefficient of performance): instantaneously, this is the ratio between the energy transmitted to the heating circuit and the electrical energy consumed.

DHW: Domestic hot water
2.4. Technical data

2.4.1. Data sheet for standard units

<table>
<thead>
<tr>
<th>TECHNICAL CHARACTERISTICS</th>
<th>Measurement units</th>
<th>AHP 60 14 kW</th>
<th>AHP 60 18 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat output (1) min/nom/max</td>
<td>kW</td>
<td>7.54 / 14.10 / 15.23*</td>
<td>7.30 / 17.90 / 19.33*</td>
</tr>
<tr>
<td>Absorbed power (1)</td>
<td>kW</td>
<td>2.91</td>
<td>4.07</td>
</tr>
<tr>
<td>C.O.P. (1)</td>
<td>W/W</td>
<td>4.85</td>
<td>4.40</td>
</tr>
<tr>
<td>Heat output (2) Name</td>
<td>kW</td>
<td>13.44</td>
<td>17.25</td>
</tr>
<tr>
<td>Absorbed power (2)</td>
<td>kW</td>
<td>4.35</td>
<td>5.99</td>
</tr>
<tr>
<td>C.O.P. (2)</td>
<td>W/W</td>
<td>3.09</td>
<td>2.88</td>
</tr>
<tr>
<td>SCOP (3)</td>
<td>W/W</td>
<td>4.48</td>
<td>4.46</td>
</tr>
<tr>
<td>Water flow rate (1)</td>
<td>m³/h</td>
<td>2.40</td>
<td>3.10</td>
</tr>
<tr>
<td>Useful head (1)</td>
<td>kPa</td>
<td>61</td>
<td>33</td>
</tr>
<tr>
<td>Energy efficiency Water 35°C / 55°C</td>
<td>Class</td>
<td>A+++/A++</td>
<td>A+++/A++</td>
</tr>
<tr>
<td>Compressor Type</td>
<td></td>
<td>Twin Rotary DC Inverter</td>
<td>Twin Rotary DC Inverter</td>
</tr>
<tr>
<td>Oil (type)</td>
<td></td>
<td>ESTER OIL VG74</td>
<td>ESTER OIL VG74</td>
</tr>
<tr>
<td>Number of compressors</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quantity of oil</td>
<td>L</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Refrigerant Type</td>
<td></td>
<td>R32</td>
<td>R32</td>
</tr>
<tr>
<td>Refrigerant load (4)</td>
<td>kg</td>
<td>3.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Quantity of refrigerant in equivalent of CO₂ (4)</td>
<td>t</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Operating pressure (upper/lower) in heat pump mode</td>
<td>bar</td>
<td>42.8/1.3</td>
<td>42.8/1.3</td>
</tr>
<tr>
<td>Internal exchanger Water content</td>
<td>L</td>
<td>1.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>

(*) with the Hz maximum function activated
TECHNICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>Measurement units</th>
<th>AHP 60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>14 kW</td>
</tr>
<tr>
<td>Hydraulic circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic circuit water capacity</td>
<td>L</td>
<td>3.0</td>
</tr>
<tr>
<td>Max. pressure on water side</td>
<td>bar</td>
<td>6</td>
</tr>
<tr>
<td>Hydraulic connections</td>
<td>Ø</td>
<td>1”M</td>
</tr>
<tr>
<td>Minimum volume of water for bottle</td>
<td>L</td>
<td>60</td>
</tr>
<tr>
<td>Nominal power of the circulator</td>
<td>kW</td>
<td>0.14</td>
</tr>
<tr>
<td>Maximum power of circulator</td>
<td>kW</td>
<td>0.14</td>
</tr>
<tr>
<td>Max absorbed current of the circulator</td>
<td>A</td>
<td>1.10</td>
</tr>
<tr>
<td>Energy Efficiency Index (IEE) of the circulateur</td>
<td>≤ 0.23</td>
<td>≤ 0.23</td>
</tr>
<tr>
<td>Acoustic level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise level Lw (5)</td>
<td>dB (A)</td>
<td>68</td>
</tr>
<tr>
<td>Noise level Lw (6)</td>
<td>dB(A)</td>
<td>66</td>
</tr>
<tr>
<td>Acoustic pressure at a distance of 1 m Lp1 (7)</td>
<td>dB (A)</td>
<td>52.7</td>
</tr>
<tr>
<td>Acoustic pressure at a distance of 10 m Lp1 (7)</td>
<td>dB (A)</td>
<td>36.6</td>
</tr>
<tr>
<td>Electrical data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>400V/3P+N+</td>
<td></td>
</tr>
<tr>
<td>Maximum power absorbed</td>
<td>kW</td>
<td>6.7</td>
</tr>
<tr>
<td>Maximum current absorbed</td>
<td>A</td>
<td>9.7</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Brushless DC motor x 2</td>
<td></td>
</tr>
<tr>
<td>Nominal air flow rate</td>
<td>m³/h</td>
<td>9800</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - Length</td>
<td>mm</td>
<td>1044</td>
</tr>
<tr>
<td>B - Width</td>
<td>mm</td>
<td>448</td>
</tr>
<tr>
<td>C - Height</td>
<td>mm</td>
<td>1409</td>
</tr>
<tr>
<td>A - Length packed</td>
<td>mm</td>
<td>1044</td>
</tr>
<tr>
<td>B - Width packed</td>
<td>mm</td>
<td>455</td>
</tr>
<tr>
<td>C - Height packed</td>
<td>mm</td>
<td>1409</td>
</tr>
<tr>
<td>Weight for shipping</td>
<td>kg</td>
<td>148</td>
</tr>
<tr>
<td>Weight in service</td>
<td>kg</td>
<td>136</td>
</tr>
</tbody>
</table>

The above performances are given for the following operating conditions, as per the standard 14511:2018:

1. Heating: external air temperature 7°C dry C temperature (Ts) 6°C humid temperature (Th); in/out water temp. 30/35°C.
2. Heating: external air temperature 7°C dry C temperature (Ts) 6°C humid bulb (Th); in/out water temp. 47/55°C.
3. Heating: average climatic conditions: Tbib=-7°C; in/out water temp. 30/35°C.
4. Indicative data and subject to variation. For the correct data, always refer to the data label on the unit.
5. Sound power: heating mode condition (1) according to EN 12102-1:2013; value calculated on the basis of measurements made in accordance with UNI EN ISO 9614-1.
6. Sound power: partial load heating mode according to Annex A of EN 12102:2017; value determined on the basis of measurements carried out in accordance with UNI EN ISO 9614-1, in accordance with the requirements of HP Keymark certification.
7. Sound pressure: value calculated from the sound power level (5) according to ISO 3744:2010(*) with the Hz maximum function activated.

N.B. : the performance date is indicative data and subject to variation. Furthermore, the outputs provided in points (1) and (2) are given in relation to the instantaneous power as per standard EN 14511. The figure provided in point (3) is determined based on the standard EN 14825.
2.4.2. **Electrical data for the unit and auxiliaries**

<table>
<thead>
<tr>
<th>Unit power supply</th>
<th>V~/~/Hz</th>
<th>3N~400V-50Hz*</th>
<th>Economod Heat Pump Control external command circuit</th>
<th>V~/~/Hz</th>
<th>12/01/1950</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated command circuit</td>
<td>V~/~/Hz</td>
<td>12/01/1950</td>
<td>Power supper to fans</td>
<td>V~/~/Hz</td>
<td>230/1/50</td>
</tr>
</tbody>
</table>

* Acceptable variations + /- 10%.

REMARK: The electrical data may be modified. You must consequently refer to the data label on the RH side panel of the appliance.

2.4.3. **Sound emissions**

The acoustic pressure datas are calculated from the acoustic power level in compliance with norm ISO 3744:2010 regarding heat pumps field operation.

2.4.3.1. **Full load**

The noise levels are for the units under full load in normal test conditions in heating mode in compliance with the provisions of the regulation UE 813/2013 (dry temperature (humid temperature) of the external air = 7°C (6°C), in/out water temperature = 47-55°C). The tolerance on the value of the total acoustic power level is 2 dB (A). The value is determined in compliance with EN 12102-1: 2017, used together with EN ISO 9614-2 which describes the test methods with the intensimetric method.

<table>
<thead>
<tr>
<th>Models in kW</th>
<th>Acoustic power level per octave band dB(A)</th>
<th>Acoustic power level [LW(A)] dB(A)</th>
<th>Acoustic power level at 1m dB dB(A)</th>
<th>Acoustic power level at 10m dB dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63Hz 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>40.6 52.4 63.1 61.8 63.0 57.6 55.2 68 52.7 36.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>40.9 52.7 63.4 62.1 63.3 57.9 55.5 68 52.7 36.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.3.2. Partial load

Sound levels refer to units at full load and in conditions guaranteeing a thermal capacity equal to that declared at a temperature of 7°C for an average climate, in accordance with standard EN 14825, in accordance with the provisions of EU regulation 813/2013 (dry bulb temperature (wet bulb temperature) of the outside air = 7°C (6°C), water temperature inlet-outlet = 47-55°C). The tolerance on the value of the total sound power level is of 2dB(A). Value is determined according to EN 12102-1:2017, used in conjunction with EN ISO 9614-1 which describes the test methods with the intensimetric method.

<table>
<thead>
<tr>
<th>Models in kW</th>
<th>Acoustic power level per octave band dB(A)</th>
<th>Acoustic power level [LW(A)] dB(A)</th>
<th>Acoustic power level at 1m dB dB(A)</th>
<th>Acoustic power level at 10m dB dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63Hz</td>
<td>125 Hz</td>
<td>250 Hz</td>
<td>500 Hz</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>41.3</td>
<td>52.5</td>
<td>57.9</td>
<td>60.4</td>
</tr>
<tr>
<td>18</td>
<td>41.8</td>
<td>53</td>
<td>58.4</td>
<td>60.9</td>
</tr>
</tbody>
</table>
2.5. Description

2.5.1. Models AHP60 14 - 18 kW

Figure 1 - Frame sizes (in mm) for both 14kW and 18kW

IN/OUT : 1”M G E: electrical power input
2.5.2. **Access to internal components**

Figure 2 - Dismantling procedure

1) Remove the cover by unscrewing the screws (numbers 1, 2, 3, 4, 5, 6, 7, 8, 9).
2) Remove the screws (numbers 10, 11) from the front plate, then push the panel downwards to free the interlocking tabs (view A); pull the panel forwards to release it.
3) Remove screw number 12 and those on the battery side of the appliance To remove the side panel, pull it upwards (to release the locking tab C shown in view B) and remove it.
2.6. Operating principle

2.6.1. Production of DHW (winter mode)

When the heat pump is operating, other than in the start-up and transition phases, the inlet temperature must not fall below 25°C. A lower value may cause system anomalies, including damage to the compressor. Similarly, the outlet temperature must not exceed 60°C. With temperatures higher than those indicated, especially if combined with low water flow rates, there may be anomalies in the operation of the unit, or in the most critical cases, the safety devices may be tripped.

2.6.2. Operating ranges

This heat pump is designed to operate over an outdoor air temperature range of -20°C to +40°C. The outlet water temperature depends on the outside air temperature, within the limits provided in the diagram below.

Range of water supply temperatures depending on the ambient temperature:

![Diagram showing the range of water supply temperatures depending on the ambient temperature.](image)

Figure 3 - Outlet water temperature that the heat pump may provide according to ambient air temperature
Water flow rate on the condenser

The nominal water flow rate is determined for a temperature difference of 5°C between the inlet and the outlet of the condenser. The maximum authorised flow rate is that with a temperature difference of 3°C whereas the minimum is that with a temperature difference of 8°C in nominal conditions, as shown on the data sheet.

For more detailed information, we provide a table below which indicates the minimum flow rates to be guaranteed on the condenser to ensure that it operates correctly according to the model, as well as the disconnection and re-engagement flow rates for the flow rate controller.

Note: the water flow rate controller is used to avoid the failure of the anti-freeze sensor due to insufficient flow rate but does not guarantee the minimum flow rate required for correct operation of the unit.

<table>
<thead>
<tr>
<th>Model</th>
<th>AHP60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 kW</td>
</tr>
<tr>
<td>Minimum flow in m³/h</td>
<td>1.5</td>
</tr>
<tr>
<td>Maximum flow in m³/h</td>
<td>4.0</td>
</tr>
<tr>
<td>Flow controller trigger threshold in m³/h</td>
<td>0.551</td>
</tr>
<tr>
<td>Flow controller activation threshold in m³/h</td>
<td>0.630</td>
</tr>
</tbody>
</table>

* When the flow drops below the indicated limit (flow controller trigger threshold) the flow controller signals alarm 06, which can be reset only when the flow controller trigger threshold is exceeded.

INFORMATION: Insufficient water flows can cause too low evaporation temperatures with the intervention of safety devices and unit shutdown and, in some extreme cases, ice formation in the evaporator and serious failures of the refrigeration circuit.
3. INSTALLATION

CAUTION: The outdoor unit and the Ecomod Heat Pump Control must be installed using the new equipment supplied.

3.1. Lifting and handling

Handling must be carried out by qualified personnel, correctly equipped with tools suited to the weight and size of the unit, in compliance with the accident prevention safety rules.

Notes:
1. Check the weight on the data label on the unit or in the technical data table;
2. Check by moving the unit that there are no paths, ramps, steps or disconnected doors that could affect movement and damage the unit;
3. Ensure that the unit is kept vertical while it is being moved;
4. Before moving the unit, check that the equipment is suitable for lifting it and will prevent any damage occurring;
5. Only lift using one of the listed procedures;
6. Before any handling is started, ensure that the unit is balanced and stable.

3.1.1. Lifting method

The authorised lifting methods are:
- fork lift truck
- ropes/chains + sling bar

Lift progressively and check that the ropes/chains are in the correct position

Figure 4 - Lifting with a fork lift truck
3.2. Location

The choice of the position for installation is particularly important insofar as any later movement is a delicate operation requiring the intervention of a qualified person.

Comply with the maximum and minimum distances for the outdoor unit (see next paragraph); the performance and service life guarantees depend on this.

3.3. Installing the outdoor unit

3.3.1. Installation precautions

The outdoor unit must only be installed outdoors. If a shelter is required, it must have broad openings and comply with the installation clearances (figure 10). All models of the AHP60 series have been designed for outdoor installation (see paragraph 1.2.3 for further details).

• Choose a site that is sheltered from strong cold predominant winds (mistral, tramontane, etc.).

• The outdoor unit is made of metal elements that can be subject to corrosion when exposed to particularly aggressive environments, especially the evaporator, which is directly exposed to an external air flow forced by the fan. 3 particularly aggressive environments may be mentioned.

 Marine environment: the marine environment is characterised by a high concentration of sodium chloride (salt). It is transported by the sea spray in the immediate vicinity of the coasts, by the fog, or by the sea breeze which can carry particles of salt water far from the coasts, up to several kilometres in the continent.

 Industrial environment: industries use or transform chemical elements in their processes: cleaning or surface treatment agents, various combustions (hydrocarbons, coal, incinerations), salting, etc. A list of corrosive elements that can be encountered in this type of environment is provided in Table on page 27.

 Rural environment: the rural environment is not free of pollution. In fact, agricultural processes include the spreading of chemical fertilisers, and emissions of potentially aggressive pollutants such as animal waste in livestock farms or gas emissions from agricultural machinery. A few elements to watch for are also shown in Table on page 27.

Determining which corrosive elements are present in the environment of an installation is a necessary preliminary step but is not sufficient to define how to protect the unit. It is also necessary to establish if it will be directly and continuously or frequently exposed to aggressive agents.

An observation of the climate and the surrounding terrain will help to define the main wind directions in the area and the distance to which the sea spray or fertilisers will be transported.

A study of the configuration of the buildings is to be carried out to highlight the zones of air recirculation, and the zones exposed to the emissions of pollutants (chimneys, nearby agricultural fields), in particular in the case of installation on a roof. Positioning the heat pump behind a building may be sufficient to protect it from aggressive agents.

Attention, installation behind a wall or under an alcove is not a guarantee of protection against corrosive elements, the shelter must allow ventilation in fresh uncontaminated air to constitute an effective protection against corrosion.

These few tips are not intended to be exhaustive when choosing a unit with or without an anti-corrosive coating (AC). It is impossible to define this precisely because each installation is unique. However, by taking into account the above-mentioned elements, it is possible to estimate whether the appliance will be installed in exposed conditions or not. In case of doubt, it is preferable to choose a unit with a protective coating, in order to guarantee the longest life for the appliance.

• For correct operation and an optimal life span of your equipment, it is necessary to have a quality of water that complies with the general conditions of sale.

• The unit must be easily accessible for future installation and maintenance work. If the outdoor unit is installed at a height, arrangements must be made to ensure the safety of the workers (platform with guardrail accessible via available means and in accordance with regulations).
• Make sure that the passage of hydraulic connections is possible and easy, especially in the case of several heat pumps.

• The outdoor unit is weatherproof, but avoid installing it in a place where it may be exposed to dirt or heavy water run-off (under a leaking gutter, under a roof, etc.). Avoid installing the unit in places where water is likely to stagnate or fall, for example from gutters.

• The outdoor unit must be raised by at least 50 mm from the ground. Avoid places where snow can accumulate (e.g. corners of buildings with sloping roofs). If the unit is to be installed in areas prone to snowfall, it should be raised by at least 20 cm and at most 150 cm (depending on the average snowfall in the area) to prevent snow from accumulating around the machine.

• During operation, water (due to the condensation of the water contained in the air) is discharged from the outdoor unit. If the unit is installed on a terrace where there is a risk of frost, a connection for the condensate drainage is required.

• If the appliance is installed in a region where the temperature may fall below 0 °C for long periods, fit the drain hose with a trace heater to prevent it from icing over.

• If a water trap is installed, check the efficiency of the condensate drain and provide a trace of the trap.

• Nothing should obstruct the air from circulating through the evaporator and out of the fan.

• The site where the unit is installed must be free of foliage, dust, etc., which could obstruct or cover the heat exchanger.

• Ensure that the appliance does not disturb neighbours or users (noise level, draughts caused, low temperature of the air blown causing a risk of freezing plants in its path).

• Exterior installation on a roof or in an open parking ramp is possible (contact the Pre-Sales Department).

• It is advisable to create a support slab of suitable size for the unit. The units transmit a low level of vibration to the ground. However, it is advisable to install anti-vibration mounts between the base frame and the supporting surface. In the case of a suspended installation, it is necessary to ensure that the wall is constructed of solid brick, concrete, or other material of equivalent characteristics. The wall must be designed to support at least four times (4x) the weight of the unit. Similarly, the supporting surface must be designed to support the weight of the unit. This weight is indicated on the technical label affixed to the machine, and in this manual in the chapter “technical specifications”. The support surface must not be inclined in order to ensure the operation of the refrigerant circuit and to avoid tilting of the unit.

• The installation surface of the unit must not be smooth, to avoid water/ice deposits, which can be dangerous.

• Provide a gutter or condensate drain.

• The presence of cavities such as pits, manholes, building entrances, or sloping roofs, in which refrigerant could accumulate in case of leakage and generate an explosive atmosphere, must be avoided for at least 5 m around the unit.

• It is very important to avoid recirculation between suction and discharge, otherwise the performance of the unit will deteriorate or even interrupt normal operation.

• In the case of a cascade of heat pumps, it is forbidden to place the fan of one unit facing the evaporator (air inlet) of another unit.
Industries / Risk Zones

<table>
<thead>
<tr>
<th>Type</th>
<th>Corrosive Product</th>
<th>Paper / Wood</th>
<th>Incinerators & Other Combustions</th>
<th>Cleaning</th>
<th>Salt Extraction</th>
<th>Swimming Pools</th>
<th>Treatment Plants</th>
<th>Agriculture & Fertiliser Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides (NOx)</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphur oxides (SxOy)</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon oxides</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile gases or liquids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphurs</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Volatile Organic Compounds (VOC)</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>Terpenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td>Methanol</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other alcohols</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acids</td>
<td>Phenols</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulphuric acid</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrochloric acid</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrofluoric acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorosilicic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particles</td>
<td>Micro-particles</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ash</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Nitrates</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulphates</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorine compounds</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromides</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Figure 5 - List (non exhaustive) of the corrosive products encountered in different environments
3.3.2. **Installation precautions**

We recommend that you carry out a noise nuisance risk study. This will have to take into account the residual noise without the heat pump, the data of the machine, the place of implantation, the distance to the measuring point, this list is not exhaustive. The levels of normative requirements are different day and night. In order to reduce the risks, it is advisable to study the vibration transmissions from the machine to the building, as well as piping, reverberation,...

3.3.2.1. **Principle of reflection of the noise emitted.**

Inner courtyards and closed corners should be avoided as far as possible. The volume also has an impact, for example a small inner courtyard leads to a greater reflection.

- Heat pump on the ground or on a terrace (free field without obstacle)
- Heat pump placed against a wall shows doubled noise perception
- Heat pump placed in a wall angle shows quadruple noise perception
- Heat pump placed in an inner courtyard shows eight-fold noise perception
3.3.3. Minimum technical clearances

- By following the installation precautions, it is absolutely essential to ensure the following minimum service clearances are respected. The distances E and L are required for the maintenance of the unit. The other distances are required for the unit to operate correctly.

![Diagram of outdoor unit installation](image)

Figure 6 - Minimum installation clearances around the outdoor unit

<table>
<thead>
<tr>
<th>Model</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP60 14 kW</td>
<td>1500</td>
<td>500</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>AHP60 18 kW</td>
<td>1500</td>
<td>500</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

IMPORTANT: Do not clog or cover the ventilation openings on the top cover.

![Diagram of units side by side](image)

- If units are positioned side by side, the minimum distance L_{min} to be respected between them is 1 m.
• The minimum clearances (figure 6 above) must be respected regardless of the installation to guarantee the performances and safety of the unit.

• In general, any recycling of the air should be avoided as this will have an impact on the performances of the heat pump.

• In the event of an accidental leak, it must be possible to evacuate the refrigerant.

• The unit is designed to be installed outdoors. If installation under an alcove cannot be avoided, be sure to follow the instructions below in order to limit a drop in performance and air recycling.

![Figure 7 - Minimum clearances and types of installation](image)

• Installation under a shelter or an alcove causes the unit's performances to drop. To limit this drop, an alcove must have 2 open opposite faces in the axis of the fan. If due to location, the open sides cannot comply with this rule, provide a removable enclosure around the unit to separate the air inlet and outlet. A gutter or drain should be installed to drain condensation water.

• If grilles are installed on the open sides of the alcove, they must have an effective (open) surface area limiting the pressure drop to <5Pa to allow all installed heat pumps to discharge the required flow rate (see flow rate in the table in paragraph 2.4.1).

• Ideal Heating cannot be held responsible for any drop in performances of the unit if these recommendations are not respected.
3.3.4. **Condensate evacuation system**

All the units have been designed so that the base of the unit acts as a condensate drainage tray. A plastic connector is supplied and is to be installed under the base, to connect a hose to channel the condensation water.

Each unit is therefore equipped with a hole on the base of the hydronic kit on the battery side for the drainage of any condensation that may penetrate through the pipes of the hydraulic system. As these pipes are well insulated, the production of condensation is minimised and it is therefore not necessary to connect a drainage pipe to this connection.

MORE ESPECIALLY IN THE COLDEST REGIONS, WE RECOMMEND INSTALLING SUPPORTS TO RAISE THE UNIT TO PREVENT ICE FROM FORMING UNDER TDHE UNIT AND DAMAGING IT.

![Figure 8 - Condensate evacuation](image)

3.4. **Installing the control unit**

The Ecomod Heat Pump Control is supplied separately from the heat pump, with a specific installation guide inside its packaging. Refer to this guide to connect this unit.

3.5. **Hydraulic connections**

3.5.1. **Accessories to be connected to the external unit**

- In the same way, the hydraulic connections must comply with good engineering practices according to the regulations in force.
- Before making the hydraulic connections, the supply pipes must be cleaned to avoid contaminating the tank with metal or other types of particles.
- The Plumbing British standard must be respected.
- Check when hot that the pressure does not exceed the service pressure.
- **Recommendations**: for regions where the water is hard, the use of a water softener does not imply any change in our Guarantee, provided that the softener is adjusted in line with trade standards, and is checked and maintained regularly.
- The water hardness must be greater than 8°f and less than 15.1°f.

3.5.2. **General**

The hydraulic connections must comply with the national or local regulations; the pipes may be made of steel or galvanised steel. Flexible hoses may be used if their diameter is larger. The dimensions of the pipes must be chosen carefully to suit the nominal water flow rate of the appliance and the pressure drops in the hydraulic circuit. All of the hydraulic connections must be insulated with closed-cell insulation of adequate thickness. The unit must be connected to the pipes with new flexible hoses, not ones that have already been used. We recommend fitting the following components in the hydraulic circuit:

- Thermometer with sensor for the reading the temperature in the circuit.
- Manual valves to isolate the cooler from the hydraulic circuit.
- Y-shaped metal filter and filter-settler (installed on the system return pipe) with a metal mesh not larger than 1mm.
- Loading unit and discharge valve if required
When choosing the size of the pipes, make sure that the maximum pressure drop of the system as stated in the technical data in paragraph 2.4.1 is not exceeded (see useful head).

Always connect the pipes to the connections using the wrench-to-wrench system.

Make a suitable drain for the safety valve.

It is the installer’s responsibility to check that the expansion vessel is suitable for the actual capacity of the system.

A metal filter must be fitted (with a mesh size not exceeding 1000 microns) as well as a T connector on the return pipe of the system labelled WATER INLET. If the flow rate switch is tampered with or modified, or if the metal filter and filter-settler are not fitted to the system, the warranty is immediately void. The filter and filter-decanter must be kept clean, so please always ensure they are clean after installation of the appliance and check them periodically.

All units are fitted with a flow rate controller (factory-fitted). If the flow rate controller is modified or removed, or if the water filter and filter-settler are not fitted on the unit, the warranty is immediately void. Refer to the wiring diagram supplied with the appliance for the connection of the flow rate controller. Never shunt the flow rate controller connections in the terminal block.

The heating system connected to this unit must be installed in compliance with the standard EN-12828.

3.5.3. Manometric head available

The circulation pump is built into the heat pump. The hydraulic pressure available at the outlet of the outdoor unit is shown in the graph below.

![Graph - Hydraulic pressures and flow rates available](image)

Figure 9 - Hydraulic pressures and flow rates available
3.5.4. Control of primary circuit flow rates

CAUTION: To manage the primary circuit water flow is essential for the product performance and lifespan. The flow setting value must be adapted to the application. Refer to the Ecomod Heat Pump Control manual (unit control) and the design study.

It is imperative to install adjustment valves (not supplied), refer to the diagram library.

In the case of a cascade installation, the flow rate must be balanced between all units. It is recommended to carry out this balancing using balancing valves in order to allow the measurement unit flows over time.

CAUTION: The adjustment and management of flow rates is the responsibility of the installer/under installer/operator responsibility and will not be operated by Ideal Heating. During commissioning of the system, balancing control will be requested by Ideal Heating. Without control, commissioning will be refused.

3.5.5. Water quality

- **Preparing the water system before putting the heat pump into service**
 For any installation (new or renovation), the water pipes must be thoroughly cleaned. The purpose of this initial cleaning is to eliminate germs and residue that can cause deposits to form.
 In new installations in particular, residue from grease, oxidised metal, and even copper micro-deposits must be scrupulously removed.
 In renovated installations, cleaning should focus on removing sludge and the products of corrosion formed when the unit was last in operation.
 There are two types of methods for cleaning and removing sludge: a high intensity approach that takes a few hours, and a slower, more gradual approach that takes several weeks. In the first case, it is essential to clean before connecting the new heat pump. In the second case, fitting a filter on the heat pump return will capture any loose deposits.
 The cleaning performed prior to installation improves performance, reduces energy consumption, and resists scaling and corrosion on the unit. A professional (water treatment) should carry out the cleaning.

- **Protecting the unit against scaling**
 Water naturally contains dissolved calcium ions and carbonates that cause scaling (calcium carbonate) to form. To prevent excessive deposits, take precautions with regard to the water used to fill the unit: 8°F < TH < 15.1°F.
 When the installation contains softener, the equipment must be inspected frequently to check it does not discharge any chlorine-rich water into the network: the chlorine concentration must always remain below 50 ppm.
 To prevent the build-up of calcium deposits (such as on exchange surfaces), the unit should be brought into service slowly, starting by operating at a low power with high primary water flow.
 Water must be added during the life of the heat pump. The new water adds scaling to the water system. To avoid this, it is important to check that the hardness of the water added does not exceed TH<5°F. The amount of fill water plus the amount of make-up water added during the life of the unit should not be more than three times the water capacity of the heating system. If this guideline is not followed, complete cleaning (descaling and cleaning) is necessary.
 If it has excessive scaling, the unit's settings for operation and for water treatment must be adjusted.
 Adding a large amount of untreated water always contributes a significant amount of scaling. To monitor this and to detect problems, a system water meter must be installed.
 When carrying out work on the installation, do not drain it completely. Only the sections of the circuit concerned need to be drained.
• Protecting the heat pumps against corrosion

Corrosion can affect the iron components used in heat pumps and heating systems, directly related to the presence of oxygen in the water heater's water. Dissolved oxygen that enters the unit when it is being filled for the first time reacts with the equipment materials and quickly disappears. Without refreshing the oxygen through significant contributions of water, the unit might not experience any damage whatsoever. However, it is important to follow the sizing rules and installation guidelines in order to prevent oxygen from continuously flowing into the heating water. From these rules, we have:

- Preferably an expansion vessel with a membrane rather than an open expansion vessel that allows direct passage.
- Internal pressure with the unit of more than 1 bar cold.
- Remove leaky (permeable) components that are letting out more gas than as if they were sealed. If the guidelines above are followed, the unit's system water has the proper characteristics to last a long time: 7.5 < pH < 9 with a dissolved oxygen concentration of < 0.1 ppm.

If there is a chance that oxygen could enter the unit, you must take additional precautions. Adding an oxygen scavenger (ex. sodium sulphite) is highly recommended. We recommend directing any water treatment questions to specialists, which can provide the appropriate treatment based on the characteristics of the installation, and a monitoring agreement with a guarantee as to the results.

In the case of a unit where the water is in contact with heterogeneous materials, for example, if there is any copper or aluminium, appropriate treatment is recommended to guarantee a long lifetime for the unit. In most cases, this treatment involves adding chemical solution corrosion inhibitors to the installation. We recommend contacting water treatment specialists.

• Unit monitoring

If the recommendations listed above (new installation or renovation) have been followed, the unit monitoring is limited to:

- Checking the amount of make-up water (fill water volume + make-up water volume < 3 times the unit volume).
- Checking the pH level (stable or slightly increasing)
- Checking the water hardness (TH stable or slightly decreasing)

We recommend monitoring these parameters two to three times a year. It should be noted that the "make up water quantity" parameter is vital for a long lifetime for the unit.

If any of these three above parameters deviates from the above recommendations, refer to a water treatment specialist to correct the problem.

• Setting up a plate exchanger

If the recommendations listed above cannot be met, you can set up a plate exchanger to separate the primary system from the secondary system, which protects the heat pump from undesirable effects.

• Setting up a filtration system

A filtration system on the back of the heat pump is obligatory in order to remove suspended particles from the unit.
3.5.6. Connecting water supply

Check that the system is stopped, with the general switch in position 0.
Add water until the pressure of the hydraulic circuit reaches 2 bar. The P-vent operates automatically, run the pump to readjust the pressure.
Check that there are no leaks.
After the "Start-up" stage, once the machine has started, purge the hydraulic station again.

Figure 10 - Hydraulic circuit 14-18-kW

P: Pump
AV: Bleed valve
3.5.6.1. **Precautions when connecting the water supply**

- Supervise all of the operations for connecting the water supply and filling.
- Before connecting the water supply and filling the system, disconnect the electrical power supply to the units.
- The connection of the water supply and filling of the installation must always be carried out in controlled pressure conditions (max. 1 bar). Ensure that a pressure reducer and a safety valve have been fitted on the loading/reintegration line.
- The water in the supply/filling line must be filtered properly beforehand to remove all impurities and suspended particles. Ensure that a removable screen filter and filter-settler are installed.
- Periodically check and evacuate the air that accumulates in the system.
- Fit an automatic air vent at the highest point of the system.

3.5.6.2. **Automatic air vent**

The unit is fitted with an air vent valve which automatically evacuates the air that accumulates inside the circuit, avoiding unwanted effects such as corrosion and premature wear or lower efficiency.

It also has a safety function, as if the condenser breaks, it allows the refrigerant gas to evacuate to the outside air and avoid transporting it to internal terminals.

When the air vent remains in the open position, the air is evacuated automatically.

CAUTION:

The air vent is delivered closed from the factory. It must be opened so that it can evacuate the air.

INFORMATION:

If there is a water leak, the component must be changed, by unscrewing it with two wrenches, as shown in the picture below.
3.6. Electrical connections

DANGER: Ensure that the general electrical power supply has been switched off before starting any repair work.

The protective earth conductor must be longer than the phase and neutral conductors. Furthermore, the main earth conductor and the power supply conductors must have a double attachment very close to their connections.

The electrical panel is located under the cover. The minimum spaces indicated in paragraph 3.4.2 must be respected for the electrical connections.

The installer must fit a dedicated circuit breaker upstream of the electrical connections of the appliance (main circuit breaker).

The supply voltage must be definitive and must not vary, in which case contact the power supplier. The power supply must respect the mentioned limits, otherwise the warranty is immediately void.

If the power cable is damaged, it must be replaced by qualified personnel, in order to prevent any risk.

Any appliances located nearby may cause/suffer electromagnetic disturbances to/from the unit. Be aware of this risk on the installation site. We recommend powering the unit electrically with an adequate line and protections and to use independent cable ducts.

The flow rate controller (item B on the above hydraulic diagram that is factory-fitted) must ALWAYS be connected in compliance with the indications shown on the electrical wiring diagram. Never shunt the flow rate controller connections in the terminal block. The warranty will be void if the flow rate controller connections are modified or connected incorrectly.

Refer to the specific instructions for the wiring of the Ecomod Heat Pump Control.
3.6.1. **General remarks on electrical connections**

Check that the electrical power supply complies with the nominal characteristics of the appliance (voltage, phases, frequency) as stated on the data plate located on the side panel of the appliance. The electrical connection must comply with the electrical wiring diagram of the appliance and local and international regulations (fit a main circuit breaker, and differential circuit breakers for each line, and earth installation adequately, etc.).

The electrical installation must be made in accordance with regulations.

3.6.2. **Accessing the electric box**

1. Remove the screws holding the cover. Two for each side of the machine and two holding the cover onto the cable gland support. (On the side of narrower controls, there is only one screw).
2. Remove the screws holding the electrical panel cover and wire to the terminal block.
3. Put the cables into the cable glands provided on the side of the machine so that they can be taken outside of the appliance.
4. Close the electrical panel and fit the cover onto the unit using the screws removed earlier.

![Accessing the terminal block of the outdoor unit](image)

CAUTION:

All of the installation operations must be carried out when the heat pump is stopped, and after disconnecting the electrical power supply. These operations must only be carried out by QUALIFIED PERSONNEL. Remove the cover without remove the cable duct support plate. When the work is complete, refit all of the covers removed with their screws and seals (if present).
3.6.3. Current source

DANGER:

Electrical connections must only be carried out by QUALIFIED PERSONNEL, in compliance with the legislation in force. Ensure that an adequate earth connection is installed, as inadequate earthing can cause electrical shocks. The manufacturer cannot be held responsible for damage caused by ineffective or absence of earthing.

The ratings and dimensions of the power cables, electrical protections and line fuses must comply with the indications of the unit’s wiring diagram and the electrical data of the technical specifications table (see paragraph 2.4.1)).

Use a dedicated power line, do not power the appliance via a line to which other users are connected. Securely fasten the power cables and make sure they do not come into contact with sharp corners. Use double-insulated cables with copper wires.

The earth connection should be made first during the connection phase and vice versa, it should be removed last when the unit is disconnected. In the power cable comes loose, make sure that the active conductors are powered before the earth wire.

A proximity switch with adequate breaking capacity must be installed on the supply line, with contact separation for all poles. The earth fault circuit breaker must be compatible with the inverters, we recommend fitting a type B differential circuit breaker, as fitting a different type of circuit breaker could lead to unwanted tripping.

The following table shows the recommended cable sections for a maximum length of 30 m. In all cases, depending on the type of installation, the physical location and the length of the cables (under or over 30 m), the electrical system installer must make the appropriate choice.

<table>
<thead>
<tr>
<th>Electrical power supply</th>
<th>Models</th>
<th>Recommended cable section (Max. length 30 m)</th>
<th>Maximal current load (A)</th>
<th>Recommended tightening torque:</th>
</tr>
</thead>
<tbody>
<tr>
<td>400V / 3ph + N</td>
<td>14 kW</td>
<td>5 x 2.5 mm²</td>
<td>9.7</td>
<td>L1/L2/L3: 3.4 Nm – N/PE: 1 Nm</td>
</tr>
<tr>
<td>400V / 3ph + N</td>
<td>18 kW</td>
<td>5 x 4 mm²</td>
<td>12.2</td>
<td>L1/L2/L3: 3.4 Nm – N/PE: 1 Nm</td>
</tr>
</tbody>
</table>

The units comply with electromagnetic compatibility specifications, but the electrical installation designer must still make the appropriate assessments to ensure there is no interference.
3.6.4. **Connecting the command unit**

See Ecomod Heat Pump Control instructions.

3.6.5. **User terminal**

The terminal block is under the machine cover. To access it, refer to the instructions in paragraph 2.5.2. The terminal block must be connected in compliance with the remarks below.

CAUTION: It is important to separate high voltage cables from very low voltage cables.

Figure 12 - Terminal block APHP60 14-18 kW

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>PE</td>
<td></td>
</tr>
</tbody>
</table>

- **L1 - L2 - L3 - N - PE => General power supply**
- **F1:** 3 x fuse 16A, aM 10.3 x 38
- **K2:** phase controller

- **Ecomod Heat Pump Control Communication bus**
- **Programmable alarm report**
- **External safety element**
- **Programmable defrosting signal**
- **Programmable input (e.g. silent mode)**
<table>
<thead>
<tr>
<th>TERMINAL BLOCK</th>
<th>CONNECTION</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>Connect the earth cable</td>
<td>Power supply input 3-Ph/N/PE, 400 Vac, 50Hz.</td>
</tr>
<tr>
<td>N</td>
<td>Connect the neutral cable from the main power supply</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Connect the L1 phase cable from the main power supply</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>Connect the L2 phase cable from the main power supply</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Connect the L3 phase cable from the main power supply</td>
<td></td>
</tr>
<tr>
<td>X-5.2</td>
<td>Connection Ecomod Heat Pump Control OCI 351 (A+)</td>
<td>Communication bus</td>
</tr>
<tr>
<td>X-5.1</td>
<td>Connection Ecomod Heat Pump Control OCI 351 (B-)</td>
<td></td>
</tr>
<tr>
<td>X-4.1</td>
<td>Connection Ecomod Heat Pump Control OCI 351 (REF)</td>
<td></td>
</tr>
<tr>
<td>X-11.1/X11.2</td>
<td>Defrosting signal output (Attention, this is not factory-configured, set to H85 = 21)</td>
<td>Inverter contact, withstands single phase voltage 230, 50Hz, 5 A resistive 1A inductive</td>
</tr>
<tr>
<td>X-14.1/X-14.2</td>
<td>Default programmable output of heat pump. (Attention, this is not factory-configured, set to H85 = 47)</td>
<td>Inverter contact, withstands single phase voltage 230Vac, 50Hz, 5A resistive, 1A inductive: automatic operation</td>
</tr>
<tr>
<td>X-15.1/X15.2</td>
<td>Remote on/off input Safety wiring => lack of water, dry contact “Lack of water” pressure switch</td>
<td>closed=machine switched on open=machine switched off Forced stoppage</td>
</tr>
<tr>
<td>X-16.1/X16.2</td>
<td>Programmable input (caution, not factory configured, for silent ventilation function put H46=25)</td>
<td>Voltage-free digital input Closed=silent mode enabled Open=silent mode disabled</td>
</tr>
</tbody>
</table>

CAUTION:
If heat pumps are mounted in cascade, each unit must have a dedicated Ecomod Heat Pump Control. The connection between a heat pump and its controller unit must be via a dedicated Modbus cable. Do not connect the buses of the different units and control units together.
4. PRE-REQUISITES BEFORE COMMISSIONING

4.1. Verification before switching on

- Check that the electrical and hydraulic diagrams of the installation the machine is connected to are available.
- Check that there are safety valves, filters and the expansion system.
- Ensure that the isolation valves of the hydraulic circuits are open.
- Ensure that the hydraulic circuit is pressurised and that the air has been evacuated.
- Check that all of the hydraulic connectors are fitted correctly and that all of the instructions on the labels have been followed.
- Ensure that measures have been taken to evacuate the condensation.
- Check that the terminals are connected and attached correctly. Check the order of the phases, the voltages between each phase and the neutral, then between each phase and the earth.
- Check if the electrical connections comply with the regulations in force, including the earth.
- The voltage must be the same as that stated on the appliance's rating plate.
- Ensure that the voltage is definitive and within the tolerance limits (±5%).
- Before switching on, check if all of the cover panels have been fitted and attached with the appropriate screws.

CAUTION:

- Power up at least 12 hours before commissioning the unit, to permit the resistors to heat the compressor housing resistor sufficiently (the resistors are automatically powered when the switch is closed). The heating elements are operating correctly if after a few minutes the temperature of the compressor housing resistor is 10 to 15°C hotter than the ambient temperature.
- Check that the weight of the pipes is not resting on the machine structure.
- Stop the appliance temporarily, do not switch off the power supply using the main isolator switch; this operation must only be used to switch off the electrical power supply to the appliance for prolonged stoppages (for example, seasonal holidays, etc.). Furthermore, the absence of the voltage means that the housing resistors are no longer powered and that there is a risk of compressor failure when the unit is switched back on.
- Do not modify the electrical connections of the appliance, otherwise this will nullify the warranty immediately.
4.2. Switching On

- To switch on the machine, turn the outer handle of the isolator switch to the ON position (shown by “I”). The display on the machine will only be switched on if the order of the phases is correct (to be checked when switched on for the first time). After powering down, wait for at least 1 minute before powering up again.
- Check if the electrical resistors of the compressors are powered correctly.

4.3. Commissioning

- The heat pump must only be commissioned by Ideal Heating commissioning personnel.
- If heating is required before the planned commissioning date, back-up generators may be used:

 Ecomod heating system only via the tank back up resistors.

 Ecomod hot water system via the gas boiler and the coil tank finisher.

4.4. Adjustment of the heat pump hydraulic flow

The heat pump hydraulic flow balance is under the installator responsibility. Please refer to the Ecomod Heat Pump Control manual adapted to your application (heating / Hydramax) in order to know the location of the adjustment devices as well as the target value of flow. Chapter 9. HYDRAULIC DIAGRAMS AND SETTINGS

Always turn off the machine before intervening in the electrical panel.

The forced operation of the pump for the duration of the adjustment, is done in unplugging the CN10 connector on the main control board.
4.5. Operating diagram

4.5.1. 14-18 kW
<table>
<thead>
<tr>
<th>SIGN</th>
<th>DESCRIPTION</th>
<th>SIGN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Compressor</td>
<td>H/CS</td>
<td>Water outlet</td>
</tr>
<tr>
<td>CO</td>
<td>Condenser</td>
<td>H/CR</td>
<td>Water inlet</td>
</tr>
<tr>
<td>EV-1/2</td>
<td>Evaporator</td>
<td>HP1</td>
<td>High pressure sensor</td>
</tr>
<tr>
<td>EEV1</td>
<td>Electronic expansion valve</td>
<td>LP1</td>
<td>Low pressure sensor</td>
</tr>
<tr>
<td>4WV1</td>
<td>4 way cycle reversing valve</td>
<td>EXT1</td>
<td>Outdoor temperature sensor</td>
</tr>
<tr>
<td>LR</td>
<td>Fluid bottle</td>
<td>ST1</td>
<td>Temperature sensor on suction line</td>
</tr>
<tr>
<td>F</td>
<td>Dehydration filter</td>
<td>DT1</td>
<td>Compressor outlet temperature sensor</td>
</tr>
<tr>
<td>SV</td>
<td>Pressure socket</td>
<td>PSHC 1.1</td>
<td>HP pressure switch, automatic reset</td>
</tr>
<tr>
<td>R1</td>
<td>Housing resistor</td>
<td>IN1</td>
<td>Inlet temperature sensor (Water)</td>
</tr>
<tr>
<td>FAN-1/2</td>
<td>Fan</td>
<td>OUT1</td>
<td>Outlet temperature sensor (Water)</td>
</tr>
<tr>
<td>MF</td>
<td>Muffler</td>
<td>DV</td>
<td>Drain valve</td>
</tr>
<tr>
<td>LS</td>
<td>Liquid separator</td>
<td>RV</td>
<td>Safety valve</td>
</tr>
<tr>
<td>RS</td>
<td>Suction line</td>
<td>FSW1</td>
<td>Flow rate controller</td>
</tr>
<tr>
<td>RD</td>
<td>Discharge line</td>
<td>P1</td>
<td>Water circulator</td>
</tr>
<tr>
<td>RL</td>
<td>Fluid line</td>
<td>AV</td>
<td>Automatic air vent</td>
</tr>
<tr>
<td>RD/RS</td>
<td>Suction/discharge line</td>
<td>SM</td>
<td>Water pressure socket</td>
</tr>
<tr>
<td>RS/RD</td>
<td>Suction/discharge line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.6. HMI Navigation

U : User
S : Password-protected specialist (195)

* : Only in case of default in progress

** : Only if USB flash drive detected with the right files
5. CONTROL INTERFACE

5.1. User interface

The unit is equipped with a display underneath a transparent polycarbonate cover with an IP67 protection rating. The interface consists of a variable text part and a series of icons identifying the operation of the appliance as shown in the table below.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Not used in this application -</td>
</tr>
<tr>
<td></td>
<td>Heating mode LED: ON LED if the unit is in heating mode.</td>
</tr>
<tr>
<td></td>
<td>Pump LED: ON LED if the pump is active.</td>
</tr>
<tr>
<td></td>
<td>Alarm LED: ON LED if an alarm is active.</td>
</tr>
<tr>
<td></td>
<td>Defrosting LED: ON LED if the defrosting is active; OFF if the defrosting is activated or complete; FLASHING if counting the time of defrosting in progress.</td>
</tr>
<tr>
<td></td>
<td>Compressor LED: ON LED if the compressor is active, OFF if the compressor is switched off, FLASHING if timer is counting down to start the compressor.</td>
</tr>
<tr>
<td></td>
<td>- Not used in this application -</td>
</tr>
<tr>
<td></td>
<td>Frost-free resistor LED: ON LED if the frost-free resistor is active.</td>
</tr>
</tbody>
</table>

The keys have specific functions as described below:

- Select the operating mode and reset the alarms that need to be done so manually.
- Every time the key is pressed, there is the following sequence:

 - off → cool → heat → off

 - The heat pump only operates in Heat mode

 - When setting the parameters, there is the BACK function to go back one level.

- Provides access to the parameter setting menu and to adjust the winter, summer and sanitary setpoints.

- UP key (arrow). In parameter setting mode, this switches to a higher menu or increases the value if a parameter.

- DOWN key (arrow). In parameter setting mode, this switches to a lower menu or decrease the value if a parameter.
It normally displays the water outlet temperature in tenths of a degree Celsius or the alarm code is displayed if there is at least one alarm in progress. If several alarms are in progress, the first one is displayed, while the second one is displayed after the first one has been reset.

Menu

Below is a description of the main navigation functions in the menus, also explaining some functions that are harder to understand. The main menu also managed the following sections:

<table>
<thead>
<tr>
<th>MENU</th>
<th>LABEL</th>
<th>PASSWORD LEVEL</th>
<th>OTHER CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint *</td>
<td>Set</td>
<td>User</td>
<td>Manual operation without Ecomod Heat Pump Control</td>
</tr>
<tr>
<td>Sensor</td>
<td>tP</td>
<td>Installer</td>
<td>--</td>
</tr>
<tr>
<td>Alarms</td>
<td>Err</td>
<td>User</td>
<td>Only if errors in progress</td>
</tr>
<tr>
<td>Digital inputs</td>
<td>Id</td>
<td>Installer</td>
<td>--</td>
</tr>
<tr>
<td>Parameters</td>
<td>Par</td>
<td>Installer</td>
<td>--</td>
</tr>
<tr>
<td>Password</td>
<td>PSS</td>
<td>User</td>
<td>--</td>
</tr>
<tr>
<td>Hours of operation</td>
<td>oHr</td>
<td>Installer</td>
<td>--</td>
</tr>
<tr>
<td>USB</td>
<td>USb</td>
<td>Installer</td>
<td>Only if a USB stick is present, see “software” instructions</td>
</tr>
<tr>
<td>Firmware version</td>
<td>Fir</td>
<td>Installer</td>
<td>--</td>
</tr>
<tr>
<td>Error history</td>
<td>Hist</td>
<td>Installer</td>
<td>Only if there is data in the history</td>
</tr>
</tbody>
</table>

Access the PSS menu to enter the maintenance technician password “195” and to activate access to a higher level. Once all of the menus have been quit, the password privileges are lost and the password needs to be entered once again.

5.2. **“SET” setpoint MENU**

The different setpoints can be displayed and modified.

<table>
<thead>
<tr>
<th>SETPOINT</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
<th>BY DEFAULT</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coo</td>
<td>- not used -</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hea</td>
<td>Setpoint in manual operation without Ecomod Heat Pump Control connected. (Manual mode)</td>
<td>°C</td>
<td>45.0</td>
<td>25 ÷ 60</td>
</tr>
<tr>
<td>Coo2</td>
<td>- not used -</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hea2</td>
<td>- not used -</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

The different setpoints can be displayed and modified. This menu is not used automatically with Ecomod Heat Pump Control.

Note: To operate manually without connection to the Ecomod Heat Pump Control, the pairing between the 2 must be cancelled:

Power down the Ecomod Heat Pump Control or disconnect the communication bus between the 2, then switch off the heat pump for a few seconds via the proximity switch, then restart it
5.3. Sensor menu [TP]

Access the PSS menu to enter the maintenance technician password “195” and to activate access to a higher level. Once you have fully exited the menus, the password privileges are lost and the password needs to be entered once again.

<table>
<thead>
<tr>
<th>LABEL</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T01</td>
<td>Inlet water temperature</td>
</tr>
<tr>
<td>T02</td>
<td>Outlet water temperature</td>
</tr>
<tr>
<td>T03</td>
<td>Compressor suction temperature</td>
</tr>
<tr>
<td>T04</td>
<td>Compressor discharge temperature</td>
</tr>
<tr>
<td>T05</td>
<td>External air temperature</td>
</tr>
<tr>
<td>T06</td>
<td>- not used -</td>
</tr>
<tr>
<td>T07</td>
<td>- not used -</td>
</tr>
<tr>
<td>T09</td>
<td>Low pressure sensor</td>
</tr>
<tr>
<td>T10</td>
<td>High pressure sensor</td>
</tr>
</tbody>
</table>

5.4. Error menu [Err]

This menu is only displayed if there are errors in progress. It allows all of the ongoing errors to be viewed. If this is a multi-circuit unit, then the errors are separated by circuit. (The label ALx provides access to the errors of the number x circuit).

5.5. Operating hours menu [OHR]

OH1: Compressor operating hours
OHP: Pump operating hours

Access the PSS menu to enter the maintenance technician password “195” and to activate access to a higher level. Once you have fully exited the menus, the password privileges are lost and the password needs to be entered once again.

5.6. Parameter menu [Par]

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>GROUP IDENTIFICATION CODE</th>
<th>PARAMETER SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>CnF</td>
<td>H01-</td>
</tr>
<tr>
<td>Not used</td>
<td>CP</td>
<td>C01-</td>
</tr>
<tr>
<td>Not used</td>
<td>ALL</td>
<td>A01-</td>
</tr>
<tr>
<td>Not used</td>
<td>rE</td>
<td>b01-</td>
</tr>
<tr>
<td>Not used</td>
<td>PUP</td>
<td>P01-</td>
</tr>
<tr>
<td>Not used</td>
<td>Fro</td>
<td>r01-</td>
</tr>
<tr>
<td>Not used</td>
<td>dFr</td>
<td>d01-</td>
</tr>
</tbody>
</table>

In CnF parameter H84, enter 21 to enable the PAC defrost signaling output.
In CnF parameter H46, enter 25 to enable the silent ventilation function input.
In CnF parameter H85, enter 47 to enable the PAC alarm output.
6. TROUBLESHOOTING

6.1. Troubleshooting of failures without error code

<table>
<thead>
<tr>
<th>Problems encountered</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMI off with heat pump powered up</td>
<td>Power supply phase reversal</td>
<td>Reverse the cabling between 2 power supply phases</td>
</tr>
<tr>
<td>Error 495 on Ecomod heat pump control or heat pump unit does not follow the Ecomod heat pump control instruction</td>
<td>No bus dialog between heat pump controller and Ecomod Heat Pump Control unit</td>
<td>Power up the heat pump. Pair Ecomod heat pump control and heat pump unit : leave the Ecomod heat pump control powered up, switch the heat pump unit power supply on / off for a few seconds.</td>
</tr>
<tr>
<td>HMI blocked, cannot operate the heat pump unit in backup mode</td>
<td>Heat pump unit in Ecomod heat pump control slave mode</td>
<td>Cancel the Ecomod heat pump control and heat pump unit pairing: power down the Ecomod heat pump control or disconnect the communication bus between the 2 then switch the heat pump unit on / off for a few seconds.</td>
</tr>
</tbody>
</table>

6.2. Error codes and repair

When the heat pump is at fault, it displays OFF and the alarm light is on. To see the error code, you must use PRG2 twice.

If an automatic reset fault appears, the heat pump restarts at the latest 6 minutes after the error code disappears.

In the event of a fault requiring manual reset, the fault is cleared by powering down the heat pump.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E000</td>
<td>External safety element triggered</td>
<td>Activates the ON/OFF input remotely, input open</td>
<td>• Closes the digital input X15.1/15.2</td>
</tr>
</tbody>
</table>
| E001 | High pressure error | The pressure sensor detects a pressure that is higher than the “high pressure setpoint” (41.5 bar). It is reset when the pressure drops back down below 32.5 bars. If the error occurs more than 3 times in an hour, it needs to be reset manually | • Check if an error occurs even when the mode is changed, by checking the operation of the 4 way valve (4WV)
• Check that the position of the unit respects the minimum distances (see paragraph 3.4.2).
• Check the electronic expansion valve EEV is operating and attached correctly.
• Check the fan is operating correctly; if it is not operating, check the presence of the 230 Vac on CN1 on the FD1/FD2 boards. Check the connection between the CN2s and the fan. |
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| E002 | Low pressure error | The pressure sensor detects a pressure that is lower than the “low pressure setpoint”. Low pressure setting for cooling = 3.5 bar. Low pressure setting for heating mode = 1.3 bar. If the error occurs more than 3 times in an hour, it needs to be reset manually. | • Check for gas leaks in the refrigeration circuit.
• Check if the error occurs when the operating mode is changed
• Check the electronic expansion valve EEV is operating and attached correctly. |
| E005 | Frost-free error | If the water outlet temperature sensor (OUT1) has a value of less than A08 (by default 3°C). This error is reset manually. | • The temperature rises by 3°C above the intervention level. |
| E006 | Flow rate error | If the flow rate controller detects an insufficient flow rate for 5 seconds consecutively. If the error occurs more than 3 times in an hour, it needs to be reset manually. Note: the pump remains active 120 seconds after the fault detection. | • Check the operation of the flow rate controller, by checking the CN6 1-2 wiring
• Check that the installation instructions provided in this manual have been respected.
• Check the condition of the water filters in the system. |
| E008 | Compressor board limit error | If during the lubrication phase, the compressor does not exceed he minimum frequency, it is stopped and the error message E008 is displayed. This error needs to be reset manually if the compressor is stopped more than 3 times in an hour, | • Check the fan is operating correctly
• Check the continuity of the connection between U, V and W on the inverter and U, V, W on the compressor.
• Check the resistor between the compressor phases: |
| | | | **Models** | Resistance of coil at 20°C |
| | | | **14-18 kW** | 0.37 Ω |
| E009 | High compressor-discharge temperature alarm | If the compressor discharge temperature exceeds the value defined by the 120°C parameter, the alarm is activated and the compressor blocked. The alarm is automatically reset when the discharge temperature drops below the limit of 110 °C. | • Check the fan is operating correctly
• Check the wiring of the compressor outlet sensor, and that the bulb is inserted correctly into the well and that there is heat dissipating paste
• Check the refrigerant level |
| E020 | Inverter or pressure sensor alarm | If the compressors has been operating for more than 150 seconds, if the low pressure sensor detects that the pressure is higher than the high pressure sensor, then the alarm message E020 is displayed. This alarm is not reset (the machine has to be powered down to clear the alarm). | • Check that the pressure sensor wiring is not inverted
• Check that the compressor pilot is working correctly
• Check the compressor is operating correctly
• Check the continuity of the connection between U, V and W on the inverter and U, V, W on the compressor.
• Check the resistor between the compressor phases: |
<p>| | | | Models | Resistance of coil at 20°C |
| | | | 14-18 kW | 0.37 Ω |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E611</td>
<td>Failure of the water inlet sensor</td>
<td>The IN1 sensor is defective</td>
<td>• Check that the IN1 sensor is attached correctly to the terminals CN2 1-2</td>
</tr>
<tr>
<td>E621</td>
<td>Failure of the water outlet sensor</td>
<td>The OUT1 sensor is defective</td>
<td>• Check that the OUT1 sensor is attached correctly to the terminals CN2 3-4</td>
</tr>
<tr>
<td>E631</td>
<td>Compressor suction sensor failure</td>
<td>The ST1 sensor is defective</td>
<td>• Check that the ST1 sensor is attached correctly to the terminals CN2 5-6</td>
</tr>
<tr>
<td>E641</td>
<td>Failure of the compressor discharge sensor /</td>
<td>The DT1 sensor is faulty or</td>
<td>• Check that compressor discharge sensor DT1 or the NO contact of the K1 switch are connected to the terminals CN2 7-8 correctly</td>
</tr>
<tr>
<td></td>
<td>intervention of the manual reset pressure switch(closed 42.8bar open 34bar)</td>
<td>the command chain is open</td>
<td>• Check the K1 switch is working correctly: If there is no voltage at the 1-A2 switch coil, check the safety devices connected in series to it: - Pressure switch with automatic reset S1 - Thermostat positioned at top of *compressor TS1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intervention/reset temperatures TS1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Closing temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 ± 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 ± 5</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>E651</td>
<td>Failure of the external</td>
<td>The EXT1 sensor is defective</td>
<td>• Check that the EXT1 sensor is attached correctly to the terminals CN3 1-2</td>
</tr>
<tr>
<td></td>
<td>air sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E691</td>
<td>Low pressure sensor</td>
<td>The LP1 low pressure sensor is defective</td>
<td>• Check that the LP1 sensor is attached correctly to the terminals CN1 1-2</td>
</tr>
<tr>
<td></td>
<td>failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E701</td>
<td>High pressure sensor</td>
<td>The HP1 high pressure sensor is defective</td>
<td>• Check that the HP1 sensor is attached correctly to the terminals CN1 3-4</td>
</tr>
<tr>
<td></td>
<td>failure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| E801 | Inverter board communication error | • The communication cable between the inverter board and the fan boards is not connected or is defective.
• The opto-coupler OPT1 is defective or not powered
• Check the fuse on the fan board | • Check the communication cable between the command terminals CN15 2-3, opto-coupler OPT1 (see electrical diagram), fan board FD1 and compressor board INV1: |

![Electrical Diagram]
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| E801 | Inverter board communication error | • The communication cable between the inverter board and the fan boards is not connected or is defective.
• The opto-coupler OPT1 is defective or not powered.
• Check the fan fuse | If the functional diagram connections are all present, Check:
• Check if opto-coupler OPT1 is powered, if there is a 12V voltage between the terminals Vcc and GND.
• Bypass the opto-coupler separating the compressor board and the fan board to determine if the opto-coupler is working.
• If the LEDs of the compressor inverter board INV1 are not flashing and the board is powered, the board INV1 needs to be changed. |
6.3. Inverter board errors

<table>
<thead>
<tr>
<th>HMI error</th>
<th>Model 14 and 18 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 851</td>
<td>Inverter board hardware problem</td>
</tr>
<tr>
<td>Number of card flashes</td>
<td>Causes</td>
</tr>
<tr>
<td>Description error</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Controller protection</td>
</tr>
<tr>
<td>10</td>
<td>Phase current IPM* sampling error</td>
</tr>
<tr>
<td>2</td>
<td>Radiator temperature sensor error</td>
</tr>
<tr>
<td>8</td>
<td>Communication error between inverter card and main board</td>
</tr>
<tr>
<td>E 861</td>
<td>Engine power too high</td>
</tr>
<tr>
<td>3</td>
<td>IPM* protection when increasing frequency</td>
</tr>
<tr>
<td>14</td>
<td>IPM* protection when increasing frequency</td>
</tr>
<tr>
<td>12</td>
<td>Protection against overconsumption of the compressor</td>
</tr>
</tbody>
</table>

IPM: Intelligent power module
6.4. Ohminic values of the different probes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-40.0</td>
<td>191908</td>
<td>60.0</td>
<td>3012</td>
</tr>
<tr>
<td>-30.0</td>
<td>112877</td>
<td>70.0</td>
<td>2221</td>
</tr>
<tr>
<td>-20.0</td>
<td>68471</td>
<td>80.0</td>
<td>1663</td>
</tr>
<tr>
<td>-10.0</td>
<td>42739</td>
<td>90.0</td>
<td>1262</td>
</tr>
<tr>
<td>0.0</td>
<td>27396</td>
<td>100.0</td>
<td>970</td>
</tr>
<tr>
<td>10.0</td>
<td>17999</td>
<td>110.0</td>
<td>755</td>
</tr>
<tr>
<td>20.0</td>
<td>12099</td>
<td>120.0</td>
<td>594</td>
</tr>
<tr>
<td>25.0</td>
<td>10000</td>
<td>130.0</td>
<td>473</td>
</tr>
<tr>
<td>30.0</td>
<td>8308</td>
<td>140.0</td>
<td>380</td>
</tr>
<tr>
<td>40.0</td>
<td>5819</td>
<td>150.0</td>
<td>308</td>
</tr>
<tr>
<td>50.0</td>
<td>4151</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 14 - Ohmic values of the sensors
7. MAINTENANCE OF THE OUTDOOR UNIT

7.1. Draining water from outdoor unit

If the unit has to be completely drained, first close the manual inlet and outlet valves (not supplied) and then disconnect the pipes provided on the outside of the water inlet and outlet so that the liquid contained in the unit can flow out (to make this easier, we suggest installing two drain taps on the outside of the water inlet and outlet between the unit and the manual valves).

If it is necessary to recharge the system or to adjust the glycol content, the service valve may be used. Unscrew the plug of the service valve and connect a 14 or 12 mm hose (inner diameter - check the type of valve installed on the unit) connected to the water mains, then charge the system by unscrewing the special ring. When the operation is complete, tighten the ring and refit the plug. In all cases, we recommend filling the system using an external tap that has been fitted by the installer.

7.2. Filling the outdoor unit with water

Refer to paragraph 3.6.4

7.3. Prolonged shutdown

The methods for powering down depend on the application site and the shutdown period corresponding to the installation. If the appliance has a frost-free system, even when the appliance is switched off ("Off" position of the system in the appliance).

CAUTION: The frost-free protection function remains active, if the appliance is left connected to the electrical power supply.

If the system is due to be shut down for a long period, we recommend draining the hydraulic system unless there is some glycol in the system.

Switching off the appliance completely after draining the installation:
- Switch off the appliances using the “OFF” switch on each one.
- Close the water taps.
- Switch the differential circuit breaker on “OFF”.

CAUTION: If the temperature drops below zero, there is a serious risk of freezing: use a mixture of water and glycol in the system, otherwise drain the heat pump’s system and hydraulic circuits.
7.4. Periodic checks

<table>
<thead>
<tr>
<th>CAUTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation even for a short period of time, with a water temperature below +5°C is not covered by the warranty. Before switching the appliance back on after prolonged stoppage, ensure that the temperature of the water-glycol mix is at least +5°C or more.</td>
</tr>
</tbody>
</table>

All of the operations described in this chapter MUST ALWAYS BE CARRIED OUT BY QUALIFIED PERSONNEL. Before carrying out any work on the appliance or accessing internal components, make sure that the electrical power supply has been disconnected.

Before starting work, safety checks must be carried out to ensure that there is the least risk of combustion possible. Work should be carried out to a controlled procedure, to minimise the risk of the presence of flammable gases or vapours during the work. The area must be checked using a suitable refrigerant gas detector before and during the work.

Maintenance must only be carried out in weather conditions that are suitable for the operations envisaged.

It is possible that a certain quantity of compressor oil be may be deposited in the refrigeration circuit pipes, especially in the bends. For maintenance operations that need pipes to be where it is necessary to desolder the pipes, we strongly recommend cutting the pipes and not desoldering them with a torch, as the flame may trigger the combustion of any oil present.

It is forbidden to fill the refrigeration circuits with a refrigerant other than the one indicated on the rating plate. The use of another refrigerant may seriously damage the compressor.

It is forbidden to use any other oils than those listed in this manual. The use of a different oil may seriously damage the compressor.

Compressor heads and discharge lines are generally at fairly high temperatures.

Be very careful when working next to the batteries. The aluminium fins are very sharp and can cause serious injury*. Always wear suitable personal protection equipment. (PPE)

After finishing the maintenance operations, replace the panels and fasten them using the attachment screws. Pay special attention to closing the electrical component housing correctly.

After finishing the maintenance operations, ensure that the electrical power supply cable gland is tightened correctly.

We recommend carrying out checks and periodic maintenance operations by specialised personnel. EU Regulation 517/2014 stipulates that users must have regular checks carried out on the installations, Check their tightness and eliminate leaks as soon as possible. Check the mandatory nature and necessary documentation of Regulation 517/2014 and its subsequent amendments or repeals.
Here are the activities that are recommended and compulsory for the unit to operate correctly. The compulsory activities must be performed by an authorised customer service in order for the corresponding certificate to be issued. Failure to respect these activities will make the warranty void and could considerably shorten the life of your product.

<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>1 month</th>
<th>4 months</th>
<th>6 months</th>
<th>12 month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling the water circuit</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence of air bubbles in the water circuit</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check the command and safety devices are working correctly</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Check for water leaks in the hydraulic circuit</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Check if the flow rate controller is operating correctly</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Check if the housing resistors are powered and operating</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clean the metal filters on the hydraulic circuit</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean the finned battery with compressed air</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if the electrical terminals inside the electrical cabinet and on the</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>compressor terminals are attached correctly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tightening the hydraulic connectors</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that the fans are attached and balanced</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct electrical voltage</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption correction</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification of the refrigerant load as per the regulations in force</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verification of the service, overheating and under-cooling pressures</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>If the appliance has to be switched off for a prolonged period of time,</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>drain the water from the pipes and the heat exchanger. This operation is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>necessary if, during the shut-down period, the expected ambient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperatures are below the freezing point of the fluid used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check for the presence of corrosion/oxidation</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check the panel is attached</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check the water quality (refer to the chapter on System Water characteristics) and the concentration of glycol if present</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check the hydraulic side safety valve.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.4.1. CLEANING THE EVAPORATOR

Follow the instructions below to clean correctly:

a) Remove any surface dirt. Deposits such as leaves, fibres... etc., must be used with a vacuum cleaner (use a brush or a spray, carefully avoiding rubbing with metal parts or abrasives). If compressed air is to be used, ensure that the air stream is kept pointing perpendicularly to the surface of the battery to avoid bending the aluminium fins. Take care not to bend the fins with the nozzle of the compressed air gun.

b) Rinse with water. Chemicals may be used (specific products for finned batteries). Rinse it by running water through each of the finned passages until they are completely clean. Ensure that the water stream is kept pointing perpendicularly to the surface of the battery to avoid bending the aluminium fins. Do not spray the evaporator with the stream of water. We recommend limiting the pressure to avoid damaging the fins.

7.4.1.1. Cleaning the evaporator: models 14-AC and 18-AC

The anti-corrosion treatment applied to the evaporators (available as an alternative to standard evaporators) protects against aggressive atmospheres.

The frequency of cleaning depends on the environmental conditions and is left to the common sense of the maintenance personnel. When oxidising dust or particles of grease are observed on the surface of the evaporator, we recommend cleaning it. In general, in a slightly polluted atmosphere, it is recommended to carry out the cleaning treatment every three months.

Wash preferably with hot water (40-60 °C) and a pH-neutral detergent, then rinse thoroughly with cold water (50 L/m²).

If the maintenance personnel notices that the protective cover is missing on the edge of the fins, contact the nearest service centre to reapply the cover and completely restore the corrosion protection.

Do not use a high pressure cleaner to clean the evaporator, as excessive pressure can cause irreparable damage. Damage caused by cleaning with unsuitable chemicals or excessive water pressure will not be covered by the warranty.

The aluminium fins are thin and sharp. Take care to use suitable PPE to avoid cuts and abrasions. Protect eyes and face properly to avoid splashing water and dirt during cleaning. Wear waterproof shoes or boots and clothing that cover all parts of the body.

For units installed in an aggressive atmosphere with a high degree of soiling, cleaning the evaporator should be part of the routine maintenance programme. On this type of installation, all dust and particles deposited on the batteries must be removed as soon as possible through periodic cleaning as described above.

7.5. Cleaning the external surfaces

The outer panels must be properly cleaned in order to avoid the accumulation of dust/dirt that can lead to the appearance of corrosion. The paint protects against atmospheric agents, but we recommend cleaning these surfaces as frequently as possible with a neutral detergent and water, especially if the unit is installed in an aggressive atmosphere (high pollution level, salt, etc.).

7.6. Maintenance of the outdoor unit

All extraordinary maintenance operations must be carried out by an approved service centre.
7.6.1. Installation drain

Function used to drain the system, using the circulator at maximum speed.

To enable this function:
- Control in OFF mode
- Access the parameters PRG => PSS => PRG => (enter password 195)
- Hold down the UP and DOWN keys at the same time for 3 seconds.

The circulator is activated at full speed; after 5 minutes, the circulator switches off.

You can exit the system’s drain cycle manually by pressing the MODE/ESC button or by holding down the UP and DOWN buttons for 3 seconds.

During this function, the flow rate controller’s alarm is deactivated; the maintenance technician must guarantee the installation water filling is sufficient.

7.7. Residual safety risks

This section identifies residual hazards that cannot be eliminated during the design phase by the manufacturer.

<table>
<thead>
<tr>
<th>These risks are due to:</th>
<th>Precautions / Corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling</td>
<td>There are always risks of dropping the appliance or it falling when moving it. Follow the instructions in the “Handling” section and all of the required precautions in the local regulations.</td>
</tr>
<tr>
<td>Installation</td>
<td>Incorrect installation can cause a water leak, a gas leak, an electric shock, a fire risk, incorrect operation or damage to the appliance. The installation should only be carried out by qualified technical personnel. Place the appliance in a suitable place where there is no risk of leakage of flammable gas. Make the installation area inaccessible to third parties.</td>
</tr>
<tr>
<td>Presence of dust/water inside the electrical housing</td>
<td>Secure the electrical panel properly. Infiltrations may possibly cause shocks and short circuits, resulting in injury to persons, damage to property and to the equipment itself. Ensure the appliance is earthed correctly.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>During maintenance operations, which must always be carried out by authorised personnel, ensure that the isolator switch is in the off position and lock it down.</td>
</tr>
<tr>
<td>Fan</td>
<td>Contact with the fan may cause injury and/or death. Do not access the appliance or remove the guards while the fan is running.</td>
</tr>
<tr>
<td>Refrigerant gas leak</td>
<td>Wear appropriate PPE because a gas leak can cause injury and poisoning. Read carefully the “Refrigerant Safety Data Sheet” in the manual. Do not use heat sources near the system until it is completely drained.</td>
</tr>
<tr>
<td>Water leaks</td>
<td>They can cause damage to property and personal injury and can lead to short circuits. We recommend connecting isolation valves.</td>
</tr>
</tbody>
</table>

- All persons working on the refrigeration circuit must be able to present a certificate issued by an industry-approved refrigerant handling capability organisation.
- These operations facilitate the recovery and recycling of substances, thus reducing the environmental impact in accordance with the provisions of on waste electrical and electronic equipment (WEEE).
7.8. “Maintenance” check list

- Before starting any work on equipment containing flammable refrigerant, safety checks must be performed to minimise the risk of ignition. Take the following steps before working on the cooling system:

<table>
<thead>
<tr>
<th>Measure</th>
<th>Performed</th>
<th>Remark</th>
</tr>
</thead>
</table>
| General working environment
- Inform all of the following persons of the type of work to be carried out:
 - All of the maintenance personnel.
 - All persons near to the installation.
- Prohibit access to the heat pump.
- Check for flammable materials and ignition sources in the immediate vicinity of the heat pump: remove all flammable materials and ignition sources. | | |
| Check that the refrigerant is present
- To detect a flammable atmosphere in good time: check for refrigerant leaks in the environment before, during and after the work using an explosion-proof refrigerant detector suitable for R32.
 This refrigerant detector must not generate sparks and must be properly sealed. | | |
| Extinguisher
A CO2 or powder extinguisher must be available for the following situations:
- Topping up the refrigerant.
- When welding or brazing. | | |
| Sources of ignition
- When working on a refrigeration circuit containing or having contained flammable refrigerant, it is forbidden to use ignition sources that could cause the refrigerant to ignite.
 Remove all sources of ignition from the environment where the installation, repair, disassembly or disposal work is being performed, where the risk of refrigerant leaks cannot be excluded.
- Check for the presence of flammable materials and ignition sources in the immediate vicinity of the heat pump before proceeding with the work:
 Remove all flammable materials and ignition sources. | | |
| Ventilation of the work site
- Perform repairs outdoors or ventilate the work area sufficiently before working on the refrigeration circuit or before welding or brazing.
- Ventilation must be maintained throughout the work. The ventilation must dilute the refrigerant that may escape to the outside. | | |
<table>
<thead>
<tr>
<th>Measure</th>
<th>Performed</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking the refrigeration installation
 ■ Replacement electrical components must be suitable for the application and meet the manufacturer's specifications. Only replace defective components with original parts.
 ■ Replace the components according to the instructions in the manual. If necessary, contact the Ideal Heating technical service department.
 Carry out the following checks:
 ■ The refrigerant load must not exceed that allowed for the installation room.
 ■ Check the operation of the ventilation system. The ventilation openings must not be obstructed or blocked.
 ■ Check there is refrigerant present in the secondary circuit if a hydraulic decoupling system is used.
 ■ The inscriptions and symbols must always be clearly visible and legible. Replace illegible information.
 ■ Refrigerant lines or components must be installed in such a way as to avoid contact with substances that may cause corrosion.
 Exception: refrigerant lines must be made of corrosion-resistant materials or be sufficiently protected against corrosion.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Checking the electrical components
 ■ The following safety checks must be carried out during maintenance and repair work on the electrical components: see below.
 ■ In the event of a safety-related fault, the system must not be connected until the fault has been rectified.
 If immediate rectification of the fault is not possible, a suitable temporary solution must be found to allow the system to operate. Inform the user.
 Carry out the following safety checks:
 ■ When filling or evaporating refrigerant and when flushing the refrigeration circuit, do not place electrical components or live cables in the immediate vicinity of the appliance..
 ■ Check the earth connection.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Repairs to sealed units
 ■ When working on the sealed components, switch off the appliance completely, even before removing the sealed covers.
 ■ If a power supply is absolutely necessary during the work: to prevent a potentially dangerous situation, a permanently operating refrigerant detector should be installed at the most critical locations.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Measure</td>
<td>Performed</td>
<td>Remark</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td>■ In particular, care must be taken to ensure that, when working on electrical components, the units are not modified to such an extent that the protection they offer is affected. Such modifications include damage to cables, too many connections on a single terminal block, connections that do not comply with the manufacturer's specifications, damage to seals and incorrect installation of cable glands. ■ Ensure that the device is installed correctly. ■ Check that the seals are fully inserted. This ensures that the seals provide reliable protection against the penetration of a flammable atmosphere. Change if defective. Warning The use of silicone as a sealant may affect the operation of the leak detectors. Do not use silicone as a sealant. ■ Replacement parts must meet the manufacturer's specifications. ■ Work on components suitable for flammable atmospheres: these components do not have to be powered down.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Repair work on components suitable for use in flammable atmospheres ■ While we cannot completely rule out exceeding the permissible voltages and currents, permanent capacitive or inductive loads must not be connected to the device. ■ Only components suitable for a flammable atmosphere may be powered up in the vicinity of such an atmosphere. ■ Use only suitable original parts or components approved by Ideal Heating. Other components may cause the refrigerant to ignite if leaked.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Wiring ■ Check if the wiring is subject to wear, corrosion, traction, vibrations, sharp edges or other unfavourable surrounding influences. ■ When checking, also take into account the effects of ageing or constant vibrations at the compressor and fans.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Refrigerant detectors ■ Do not use potential ignition sources to detect refrigerant and leaks. ■ Flame detectors or detectors with naked flames are prohibited.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Leak detection The following leak detection methods are suitable for installations with flammable refrigerants: Leak detection using electronic refrigerant detectors: ■ If necessary, electronic refrigerant detectors do not have the necessary sensitivity or must be calibrated to the corresponding range. Calibrate in a refrigerant-free environment.</td>
<td></td>
</tr>
<tr>
<td>Measure</td>
<td>Performed</td>
<td>Remark</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
</tr>
</tbody>
</table>

- The refrigerant detector must be suitable for the R32 refrigerant to be detected.
- The refrigerant detector must not contain any potential source of ignition.
- Calibrate the refrigerant detector to suit the refrigerant used. Set the response threshold to < 3 g/a, suitable for propane.

Leak detection using leak detection liquids:
- Leak detector liquids associated with most refrigerants are suitable.

Warning
- Liquid leak detectors containing chlorine react with the refrigerant, causing corrosion.
- Do not use liquid leak detectors containing chlorine.

Measures to be taken when there is a leak in the refrigeration circuit:
- Immediately extinguish any open flame in the vicinity of the heat pump.
- Always recover all refrigerant from the refrigeration circuit if brazing work is required to eliminate the leak.
- Flush the area to be brazed with oxygen-free nitrogen before and during brazing.

Recover the refrigerant

Recovering and evacuation of the refrigerant

If any work is to be done in the refrigerant circuit for repair or other reasons, it should be done according to standard procedures. In general, special care must be taken with regard to the flammability of the refrigerant. The following procedure should be followed in all cases:
- recover the refrigerant;
- purge the refrigerant circuit with dry nitrogen; evacuate;
- purge again with inert gas;
- open up the refrigerant circuit by cutting or brazing it.

The refrigerant charge must be recovered in an appropriate recycling bottle. The refrigerant circuit must be purged with nitrogen to ensure safety. This process must be repeated several times if necessary. Under no circumstances should compressed air or oxygen be used.

The purging process must be carried out by bringing oxygen-free nitrogen into the vacuum and raising the pressure to the operating pressure level.

Then the excess pressure must be lowered and evacuated. This process must be repeated until no refrigerant remains in the system. Once the last purging process is completed, the pressure in the system must be reduced to the atmospheric pressure level. This is particularly important if brazing is to be carried out on the refrigerant circuit.

Ensure that the outlet of the vacuum pump leads to a well ventilated area and that there are no flammable sources in the vicinity.
Measure

<table>
<thead>
<tr>
<th>Measure</th>
<th>Performed</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topping up the refrigerant
Filling with refrigerant
In addition to the usual filling procedure, the following requirements must be satisfied:
- make sure that the filling valve is not used for different refrigerants. The pipes should be as short as possible to minimise the amount of refrigerant contained.
- the refrigerant bottles must remain in a vertical position.
- make sure the refrigerant circuit is earthed before filling it.
- the appliance may be marked (if not already marked) when the filling process is complete.
- take special care not to overfill the appliance.
Before the appliance is filled, a pressure test with nitrogen must be carried out. The leak test can be performed on the filled appliance, but it must be done before commissioning. A final leak test must be performed before leaving the facility.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Deactivation
To deactivate it, it is especially important that the technician is familiar with all details of drain equipment. We recommend that first of all the refrigerant is recovered. Before draining, take samples of the oil and refrigerant if the refrigerant needs to be treated. The important factor is that there is a power supply available where the work os to be carried out.
a) Familiarise yourself with the appliance and how it operates.
b) The system must not be powered.
c) Before starting the draining, ensure that:
- equipment is available (where required) to transport the bottles of refrigerant;
- PPE are available and that they are used correctly;
- the suction process is constantly monitored by a qualified person;
- the draining station and refrigerant bottles comply with the relevant guidelines.
d) Carry out a pumping cycle, if possible.
e) If a vacuum cannot be created, suck with a manifold hose so that the refrigerant can be removed from all parts of the system.
f) Make sure that the refrigerant bottle is on the scale before starting the suction.
g) Turn on the draining appliance and follow the manufacturer’s instructions.
h) Make sure that the recycling bottles are not overfilled (never more than 80% of their capacity).
i) Never exceed the permissible operating overpressure of the recycling bottle, even for a short period. | |</p>
<table>
<thead>
<tr>
<th>Measure</th>
<th>Performed</th>
<th>Remark</th>
</tr>
</thead>
</table>
| j) If the recycling bottles are filled as required and the process is completed, ensure that the bottles and equipment are immediately removed from the facility and that all shut-off valves are closed.
 k) Recovered refrigerant must not be used to fill other systems until it has been purified and examined. | | |
| **Marking (on the heat pump)** | | |
| If the heat pump has been taken out of service, affix the following marking, along with the date and signature, prominently on the heat pump:
 ■ The refrigerant is inflammable.
 ■ The installation is not in service.
 ■ The refrigerant has been removed. | | |
| **Recover the refrigerant and the compressor oil**
 Recovery | | |
| If the refrigerant has to be recovered for repair or decommissioning, care must be taken to ensure that this is done safely.
 If the refrigerant is put into bottles, make sure that only appropriate refrigerant bottles are used for this purpose. Make sure that there are enough refrigerant bottles ready to receive the full volume in the installation. All refrigerant bottles used must be suitable for the refrigerant to be recovered and labelled accordingly (i.e., special recycling bottles for refrigerant recovery). The refrigerant bottles must contain a safety valve and shut-off valves that are firmly attached and in good condition. Empty recycling bottles are evacuated and must be cooled down before the suction process, if possible. The draining devices must be in good condition and suitable for the recovery of flammable refrigerant. Instructions for each step of the recovery procedure are to be found near to the device. In addition, calibrated scales must be available and in good condition. The hoses must be equipped with hermetic fittings and in good condition. Before using the draining device, you must check that it is in good condition, that it has been maintained correctly and that the electrical devices belonging to it have been waterproofed to avoid ignition in case of a refrigerant leak. In case of doubt, contact the manufacturer. The refrigerant recovered must be returned to the supplier in a proper recycling bottle. Do not mix refrigerants in the refrigerant bottles.
 When compressors or compressor oil are to be drained, care must be taken to ensure that they are drained at a pressure level that is sufficiently low to ensure that there is no refrigerant left in the oil. Before returning the compressor to the manufacturer, it must be evacuated. This process should only be accelerated by electrically heating the compressor housing. If the oil has to be removed from an installation, it must be done with appropriate caution. | | |
8. END OF PRODUCT LIFE-

The regular elimination and appropriate recycling of this product will help prevent environmental damage and health risks.

This crossed-out wheeled bin symbol on the equipment indicates that the product, at the end of its useful life, should be collected separately, and not disposed of with other solid/urban waste.

The equipment is manufactured in accordance with the European Directive on Waste Electrical/Electronic Equipment and the adverse effects of improper disposal are indicated in the user/installation manual. The manufacturer or its importer/distributor is available to answer any request for further information.

Ideal Heating has signed up to the Eco-systems service which collects, recycles and cleans our used electrical equipment, according to the highest environmental requirements. Eco-systems is an eco-organisation which is approved by the public authorities for the WEEE (Waste Electrical and Electronic Equipment) sector.

The appliances which have the symbol above must not be put with domestic waste and must be collected separately.

When the appliance has reached the end of its life cycle and needs to be replaced, a number of recommendations must be followed:

- the refrigerant must be recovered by specialised personnel and sent to a collection centre; as per the procedures indicated in the F-Gas Regulation 517/2014;
- any antifreeze solution that may have been added to the hydraulic circuit must be recovered and disposed of properly;
- the lubricating oil of the compressors must also be recovered and sent to a collection centre;
- electronic components such as controllers, pilot boards and inverters must be removed and sent to a collection centre;
- if the structure and various components cannot be used, they must be dismantled and separated according to their nature, in particular copper and aluminium present in significant quantities in the device.

These operations facilitate the recovery and recycling of substances, thus reducing the environmental impact.

The user is responsible for the disposing of the product correctly in compliance with the national regulations in force in the country of destination. For further information, we recommend you to contact the installation company or the competent local authorities.
<table>
<thead>
<tr>
<th>Incorrect disposal of the appliance may cause serious environmental damage and endanger people. We therefore recommend that you contact authorised persons with appropriate technical training obtained through courses recognised by the competent authorities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The same precautions described in the previous paragraphs must be followed.</td>
</tr>
<tr>
<td>Special attention must be paid to the disposal of the refrigerant gas.</td>
</tr>
<tr>
<td>Illegal disposal of the product by the end user will result in the application of the penalties provided for by the law in the country where the disposal takes place.</td>
</tr>
</tbody>
</table>
Technical Training
The Ideal Technical Training Centre offers a series of first class training courses for domestic, commercial and industrial heating installers, engineers and system specifiers. For details of courses please ring:........... 01482 498432

Ideal Boilers Ltd. pursues a policy of continuing improvement in the design and performance of its products. The right is therefore reserved to vary specification without notice.

Ideal is a trademark of Ideal Boilers.
Registered Office
Ideal Boilers Ltd., PO Box 103, National Avenue, Kingston Upon Hull, HU5 4JN
Tel 01482 492251 Fax 01482 448858
Registration No. London 322 137

Ideal Technical Helpline: 01482 498376
www.idealcommercialboilers.com